TY - JOUR A1 - Obu, Jaroslav A1 - Lantuit, Hugues A1 - Fritz, Michael A1 - Pollard, Wayne H. A1 - Sachs, Torsten A1 - Guenther, Frank T1 - Relation between planimetric and volumetric measurements of permafrost coast erosion: a case study from Herschel Island, western Canadian Arctic JF - Polar research : a Norwegian journal of Polar research N2 - Ice-rich permafrost coasts often undergo rapid erosion, which results in land loss and release of considerable amounts of sediment, organic carbon and nutrients, impacting the near-shore ecosystems. Because of the lack of volumetric erosion data, Arctic coastal erosion studies typically report on planimetric erosion. Our aim is to explore the relationship between planimetric and volumetric coastal erosion measurements and to update the coastal erosion rates on Herschel Island in the Canadian Arctic. We used high-resolution digital elevation models to compute sediment release and compare volumetric data to planimetric estimations of coastline movements digitized from satellite imagery. Our results show that volumetric erosion is locally less variable and likely corresponds better with environmental forcing than planimetric erosion. Average sediment release volumes are in the same range as sediment release volumes calculated from coastline movements combined with cliff height. However, the differences between these estimates are significant for small coastal sections. We attribute the differences between planimetric and volumetric coastal erosion measurements to mass wasting, which is abundant along the coasts of Herschel Island. The average recorded coastline retreat on Herschel Island was 0.68m a(-1) for the period 2000-2011. Erosion rates increased by more than 50% in comparison with the period 1970-2000, which is in accordance with a recently observed increase along the Alaskan Beaufort Sea. The estimated annual sediment release was 28.2 m(3) m(-1) with resulting fluxes of 590 kg C m(-1) and 104 kg N m(-1). KW - Coastal erosion KW - LiDAR KW - carbon fluxes KW - mass wasting KW - landslides KW - digital elevation model Y1 - 2016 U6 - https://doi.org/10.3402/polar.v35.30313 SN - 0800-0395 SN - 1751-8369 VL - 35 SP - 57 EP - 99 PB - Co-Action Publ. CY - Jarfalla ER - TY - GEN A1 - Schwanghart, Wolfgang A1 - Scherler, Dirk T1 - Bumps in river profiles BT - uncertainty assessment and smoothing using quantile regression techniques T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The analysis of longitudinal river profiles is an important tool for studying landscape evolution. However, characterizing river profiles based on digital elevation models (DEMs) suffers from errors and artifacts that particularly prevail along valley bottoms. The aim of this study is to characterize uncertainties that arise from the analysis of river profiles derived from different, near-globally available DEMs. We devised new algorithms quantile carving and the CRS algorithm - that rely on quantile regression to enable hydrological correction and the uncertainty quantification of river profiles. We find that globally available DEMs commonly overestimate river elevations in steep topography. The distributions of elevation errors become increasingly wider and right skewed if adjacent hillslope gradients are steep. Our analysis indicates that the AW3D DEM has the highest precision and lowest bias for the analysis of river profiles in mountainous topography. The new 12m resolution TanDEM-X DEM has a very low precision, most likely due to the combined effect of steep valley walls and the presence of water surfaces in valley bottoms. Compared to the conventional approaches of carving and filling, we find that our new approach is able to reduce the elevation bias and errors in longitudinal river profiles. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 624 KW - digital elevation model KW - drainage basins KW - DEM uncertainty KW - error KW - validation KW - SRTM KW - topography KW - resolution KW - terrain KW - geomorphometry Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-419077 SN - 1866-8372 IS - 624 ER - TY - JOUR A1 - Schwanghart, Wolfgang A1 - Groom, Geoff A1 - Kuhn, Nikolaus J. A1 - Heckrath, Goswin T1 - Flow network derivation from a high resolution DEM in a low relief, agrarian landscape JF - Earth surface processes and landforms : the journal of the British Geomorphological Research Group N2 - Digital flow networks derived from digital elevation models (DEMs) sensitively react to errors due to measurement, data processing and data representation. Since high-resolution DEMs are increasingly used in geomorphological and hydrological research, automated and semi-automated procedures to reduce the impact of such errors on flow networks are required. One such technique is stream-carving, a hydrological conditioning technique to ensure drainage connectivity in DEMs towards the DEM edges. Here we test and modify a state-of-the-art carving algorithm for flow network derivation in a low-relief, agricultural landscape characterized by a large number of spurious, topographic depressions. Our results show that the investigated algorithm reconstructs a benchmark network insufficiently in terms of carving energy, distance and a topological network measure. The modification to the algorithm that performed best, combines the least-cost auxiliary topography (LCAT) carving with a constrained breaching algorithm that explicitly takes automatically identified channel locations into account. We applied our methods to a low relief landscape, but the results can be transferred to flow network derivation of DEMs in moderate to mountainous relief in situations where the valley bottom is broad and flat and precise derivations of the flow networks are needed. KW - digital terrain analysis KW - digital elevation model KW - hydrological conditioning KW - drainage networks Y1 - 2013 U6 - https://doi.org/10.1002/esp.3452 SN - 0197-9337 SN - 1096-9837 VL - 38 IS - 13 SP - 1576 EP - 1586 PB - Wiley-Blackwell CY - Hoboken ER -