TY - JOUR A1 - Abiuso, Paolo A1 - Holubec, Viktor A1 - Anders, Janet A1 - Ye, Zhuolin A1 - Cerisola, Federico A1 - Perarnau-Llobet, Marti T1 - Thermodynamics and optimal protocols of multidimensional quadratic Brownian systems JF - Journal of physics communications N2 - We characterize finite-time thermodynamic processes of multidimensional quadratic overdamped systems. Analytic expressions are provided for heat, work, and dissipation for any evolution of the system covariance matrix. The Bures-Wasserstein metric between covariance matrices naturally emerges as the local quantifier of dissipation. General principles of how to apply these geometric tools to identify optimal protocols are discussed. Focusing on the relevant slow-driving limit, we show how these results can be used to analyze cases in which the experimental control over the system is partial. KW - stochastic thermodynamics KW - thermodynamic control KW - thermodynamic length KW - overdamped brownian systems Y1 - 2022 U6 - https://doi.org/10.1088/2399-6528/ac72f8 SN - 2399-6528 VL - 6 IS - 6 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Dieterich, Peter A1 - Klages, Rainer A1 - Chechkin, Aleksei V. T1 - Fluctuation relations for anomalous dynamics generated by time-fractional Fokker-Planck equations JF - New journal of physics : the open-access journal for physics N2 - Anomalous dynamics characterized by non-Gaussian probability distributions (PDFs) and/or temporal long-range correlations can cause subtle modifications of conventional fluctuation relations (FRs). As prototypes we study three variants of a generic time-fractional Fokker-Planck equation with constant force. Type A generates superdiffusion, type B subdiffusion and type C both super-and subdiffusion depending on parameter variation. Furthermore type C obeys a fluctuation-dissipation relation whereas A and B do not. We calculate analytically the position PDFs for all three cases and explore numerically their strongly non-Gaussian shapes. While for type C we obtain the conventional transient work FR, type A and type B both yield deviations by featuring a coefficient that depends on time and by a nonlinear dependence on the work. We discuss possible applications of these types of dynamics and FRs to experiments. KW - fluctuation relations KW - anomalous diffusion KW - stochastic processes KW - stochastic thermodynamics KW - Fokker-Planck equations Y1 - 2015 U6 - https://doi.org/10.1088/1367-2630/17/7/075004 SN - 1367-2630 VL - 17 PB - IOP Publ. Ltd. CY - Bristol ER -