TY - THES A1 - Gentsch, Rafael T1 - Complex bioactive fiber systems by means of electrospinning T1 - Komplexe Bioaktive Fasersysteme mittels Elektrospinnen N2 - Nanofibrous mats are interesting scaffold materials for biomedical applications like tissue engineering due to their interconnectivity and their size dimension which mimics the native cell environment. Electrospinning provides a simple route to access such fiber meshes. This thesis addresses the structural and functional control of electrospun fiber mats. In the first section, it is shown that fiber meshes with bimodal size distribution could be obtained in a single-step process by electrospinning. A standard single syringe set-up was used to spin concentrated poly(ε-caprolactone) (PCL) and poly(lactic-co-glycolic acid) (PLGA) solutions in chloroform and meshes with bimodal-sized fiber distribution could be directly obtained by reducing the spinning rate at elevated humidity. Scanning electron microscopy (SEM) and mercury porosity of the meshes suggested a suitable pore size distribution for effective cell infiltration. The bimodal fiber meshes together with unimodal fiber meshes were evaluated for cellular infiltration. While the micrometer fibers in the mixed meshes generate an open pore structure, the submicrometer fibers support cell adhesion and facilitate cell bridging on the large pores. This was revealed by initial cell penetration studies, showing superior ingrowth of epithelial cells into the bimodal meshes compared to a mesh composed of unimodal 1.5 μm fibers. The bimodal fiber meshes together with electrospun nano- and microfiber meshes were further used for the inorganic/organic hybrid fabrication of PCL with calcium carbonate or calcium phosphate, two biorelevant minerals. Such composite structures are attractive for the potential improvement of properties such as stiffness or bioactivity. It was possible to encapsulate nano and mixed sized plasma-treated PCL meshes to areas > 1 mm2 with calcium carbonate using three different mineralization methods including the use of poly(acrylic acid). The additive seemed to be useful in stabilizing amorphous calcium carbonate to effectively fill the space between the electrospun fibers resulting in composite structures. Micro-, nano- and mixed sized fiber meshes were successfully coated within hours by fiber directed crystallization of calcium phosphate using a ten-times concentrated simulated body fluid. It was shown that nanofibers accelerated the calcium phosphate crystallization, as compared to microfibers. In addition, crystallizations performed at static conditions led to hydroxyapatite formations whereas in dynamic conditions brushite coexisted. In the second section, nanofiber functionalization strategies are investigated. First, a one-step process was introduced where a peptide-polymer-conjugate (PLLA-b-CGGRGDS) was co-spun with PLGA in such a way that the peptide is enriched on the surface. It was shown that by adding methanol to the chloroform/blend solution, a dramatic increase of the peptide concentration at the fiber surface could be achieved as determined by X-ray photoelectron spectroscopy (XPS). Peptide accessibility was demonstrated via a contact angle comparison of pure PLGA and RGD-functionalized fiber meshes. In addition, the electrostatic attraction between a RGD-functionalized fiber and a silica bead at pH ~ 4 confirmed the accessibility of the peptide. The bioactivity of these RGD-functionalized fiber meshes was demonstrated using blends containing 18 wt% bioconjugate. These meshes promoted adhesion behavior of fibroblast compared to pure PLGA meshes. In a second functionalization approach, a modular strategy was investigated. In a single step, reactive fiber meshes were fabricated and then functionalized with bioactive molecules. While the electrospinning of the pure reactive polymer poly(pentafluorophenyl methacrylate) (PPFPMA) was feasible, the inherent brittleness of PPFPMA required to spin a PCL blend. Blends and pure PPFPMA showed a two-step functionalization kinetics. An initial fast reaction of the pentafluorophenyl esters with aminoethanol as a model substance was followed by a slow conversion upon further hydrophilization. This was analysed by UV/Vis-spectroscopy of the pentaflurorophenol release upon nucleophilic substitution with the amines. The conversion was confirmed by increased hydrophilicity of the resulting meshes. The PCL/PPFPMA fiber meshes were then used for functionalization with more complex molecules such as saccharides. Aminofunctionalized D-Mannose or D-Galactose was reacted with the active pentafluorophenyl esters as followed by UV/Vis spectroscopy and XPS. The functionality was shown to be bioactive using macrophage cell culture. The meshes functionalized with D-Mannose specifically stimulated the cytokine production of macrophages when lipopolysaccharides were added. This was in contrast to D-Galactose- or aminoethanol-functionalized and unfunctionalized PCL/PPFPMA fiber mats. N2 - Biofunktionale Materialien gewinnen immer größere Bedeutung in biomedizinischen Anwendungen wie dem künstlichen Ersatz von Knochen oder Blutgefässe. Weiterhin können diese Stoffe nützlich sein, um die Wechselwirkung zwischen Biomaterialien und biologischen Systemen wie Zellen oder Organismen weiter zu erforschen. In diversen Studien konnten Größen wie dreidimensionaler Strukturaufbau, Oberflächentopographie, Mechanik und die Funktionalisierung mit bioaktiven Substanzen als Einflussfaktoren identifiziert werden, welche auf verschiedenen Größenskalen von makroskopisch bis nanoskopisch untersucht wurden und gegenwärtig erforscht werden. Bioinspiriert von Kollagenfasern, die als Strukturmotiv an verschieden Orten im menschlichen Körper vorkommen (z.B. extrazelluläre Matrix) konnte gezeigt werden, dass Fasermatten, die eine ähnliche Größendimensionen wie die vorher erwähnten Kollagenfasern (Ø ~ 500 nm) aufweisen, eine aussichtsreiche Gerüstmatrix darstellen. Eine einfache Methode Fasermatten in diesen Dimensionen herzustellen ist Elektrospinning, wobei typischerweise eine viskose Polymerlösung durch anlegen eines Hochspannungsfeldes verstreckt wird. Obwohl auf diese Weise hergestellte Fasermatten für gewisse Zelllinien eine ideale Zellwechselwirkung aufweisen, ist die Zellbesiedelung solcher Netzwerke, bedingt auch durch die kleinen Porendurchmesser, problematisch und bedarf meistens weiterer Prozessierungsschritte. Diese Arbeit beschäftigt sich mit der einfachen Herstellung von strukturel und funktional kontrollierten Fasersystem mittels Elektrospinning. Der erste Teil behandelt ein Einschrittverfahren zum Elektrospinnen von bimodalen Fasermatten bestehend aus Nano- und Mikrofasern. In Zellstudien mit Epithelzellen konnte gezeigt werden, dass solche Netzwerke tiefer besiedelt werden als Matten bestehend aus unimodalen 1.5 μm dicken Fasern. Des Weiteren wurden diese Fasermatten für fasergerichtete Kristallisation von Kalziumcarbonat und – phosphat benutzt. In einem zweiten Teil wurden 2 Strategien für die Faserfunktionalisierung mit Peptiden und Zuckermolekülen entwickelt. Zum einen wurde gezeigt, dass funktionale Peptidfasern durch Verspinnung einer Mischung von einem Peptid-Polymer-Konjugat mit einem kommerziellen Polymer hergestellt werden konnten. Zusätzlich wurde ein modularer Ansatz für die Herstellung von reaktiven Fasern ausgearbeitet, die anschließend mit Peptiden oder Zuckern funktionalisiert wurden. Die Bioaktivität der Zucker funktionalisierten Fasern konnte durch Zellversuche erfolgreich bestätigt werden. KW - Elektrospinnen KW - Faser KW - bioaktiv KW - funktional KW - Struktur KW - electrospinning KW - fiber KW - bioactive KW - functional KW - structure Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-44900 ER - TY - THES A1 - Luschtinetz, Franziska T1 - Cyaninfarbstoffe als Fluoreszenzsonden in biomimetischen und biologischen Systemen : Fluoreszenz-Korrelations-Spektroskopie und Fluoreszenzanisotropie-Untersuchungen T1 - Cyanine dyes as fluorescent probes in biomimetic and biological systems : fluorescence correlation spectroscopy and fluorescence anisotropy studies N2 - Um Prozesse in biologischen Systemen auf molekularer Ebene zu untersuchen, haben sich vor allem fluoreszenzspektroskopische Methoden bewährt. Die Möglichkeit, einzelne Moleküle zu beobachten, hat zu einem deutlichen Fortschritt im Verständnis von elementaren biochemischen Prozessen geführt. Zu einer der bekanntesten Methoden der Einzelmolekülspektroskopie zählt die Fluoreszenz-Korrelations-Spektroskopie (FCS), mit deren Hilfe intramolekulare und diffusionsgesteuerte Prozesse in einem Zeitbereich von µs bis ms untersucht werden können. Durch die Verwendung von sog. Fluoreszenzsonden können Informationen über deren molekulare Mikroumgebung erhalten werden. Insbesondere für die konfokale Mikroskopie und die Einzelmolekülspektroskopie werden Fluoreszenzfarbstoffe mit einer hohen Photostabilität und hohen Fluoreszenzquantenausbeute benötigt. Aufgrund ihrer hohen Fluoreszenzquantenausbeute und der Möglichkeit, maßgeschneiderte“ Farbstoffe in einem breiten Spektralbereich für die Absorption und Fluoreszenz zu entwickeln, sind Cyaninfarbstoffe von besonderem Interesse für bioanalytische Anwendungen. Als Fluoreszenzmarker finden diese Farbstoffe insbesondere in der klinischen Diagnostik und den Lebenswissenschaften Verwendung. Die in dieser Arbeit verwendeten Farbstoffe DY-635 und DY-647 sind zwei typische Vertreter dieser Farbstoffklasse. Durch Modifizierung können die Farbstoffe kovalent an biologisch relevante Moleküle gebunden werden. Aufgrund ihres Absorptionsmaximums oberhalb von 630nm werden sie insbesondere in der Bioanalytik eingesetzt. In der vorliegenden Arbeit wurden die spektroskopischen Eigenschaften der Cyaninfarbstoffe DY-635 und DY-647 in biomimetischen und biologischen Modellsystemen untersucht. Zur Charakterisierung wurden dabei neben der Absorptionsspektroskopie insbesondere fluoreszenzspektroskopische Methoden verwendet. Dazu zählen die zeitkorrelierte Einzelphotonenzählung zur Ermittlung des Fluoreszenzabklingverhaltens, Fluoreszenz-Korrelations-Spektroskopie (FCS) zur Beobachtung von Diffusions- und photophysikalischen Desaktivierungsprozessen und die zeitaufgelöste Fluoreszenzanisotropie zur Untersuchung der Rotationsdynamik und Beweglichkeit der Farbstoffe im jeweiligen Modellsystem. Das Biotin-Streptavidin-System wurde als Modellsystem für die Untersuchung von Protein-Ligand-Wechselwirkungen verwendet, da der Bindungsmechanismus weitgehend aufgeklärt ist. Nach Bindung der Farbstoffe an Streptavidin wurde eine erhebliche Veränderung in den Absorptions- und Fluoreszenzeigenschaften beobachtet. Es wird angenommen, dass diese spektralen Veränderungen durch Wechselwirkung von benachbarten, an ein Streptavidintetramer gebundenen Farbstoffmolekülen und Bildung von H-Dimeren verursacht wird. Für das System Biotin-Streptavidin ist bekannt, dass während der Bindung des Liganden (Biotin) an das Protein eine Konformationsänderung auftritt. Anhand von zeitaufgelösten Fluoreszenzanisotropieuntersuchungen konnte in dieser Arbeit gezeigt werden, dass diese strukturellen Veränderungen zu einer starken Einschränkung der Beweglichkeit des Farbstoffes DY-635B führen. Liegt eine Mischung von ungebundenem und Streptavidin-gebundenem Farbstoff vor, können die Anisotropieabklingkurven nicht nach einem exponentiellen Verlauf angepasst werden. Es konnte im Rahmen dieser Arbeit gezeigt werden, dass in diesem Fall die Auswertung mit Hilfe des Assoziativen Anisotropiemodells möglich ist, welches eine Unterscheidung der Beiträge aus den zwei verschiedenen Mikroumgebungen ermöglicht. Als zweites Modellsystem dieser Arbeit wurden Mizellen des nichtionischen Tensids Tween-20 eingesetzt. Mizellen bilden eines der einfachsten Systeme, um die Mikroumgebung einer biologischen Membran nachzuahmen. Sind die Farbstoffe in den Mizellen eingelagert, so kommt es zu keiner Veränderung der Mizellgröße. Die ermittelten Werte des Diffusionskoeffizienten der mizellar eingelagerten Farbstoffe spiegeln demzufolge die Translationsbewegung der Tween-20-Mizellen wider. Die Beweglichkeit der Farbstoffe innerhalb der Tween-20-Mizellen wurde durch zeitaufgelöste Fluoreszenzanisotropiemessungen untersucht. Neben der „Wackelbewegung“, entsprechend dem wobble-in-a-cone-Modell, wird zusätzlich noch die laterale Diffusion der Farbstoffe entlang der Mizelloberfläche beschrieben. N2 - To investigate processes in biological systems on a molecular level, particularly fluorescence spectroscopic methods have proven. The possibility to observe single molecules led to significant progress in the understanding of basic biochemical processes. Fluorescence correlation spectroscopy (FCS) is one of the most popular methods of single molecule spectroscopy and is a powerful technique for the investigation of intramolecular and diffusion-controlled processes on a µs to ms time scale. The photophysical characteristics of fluorescent probes are often strongly influenced by their microenvironment. For confocal microscopy and single molecule detection applications fluorescent dyes with properties, such as high photostability and high fluorescence efficiency are highly needed. Due to the high fluorescence efficiency and the high potential to design tailor-made fluorescence probes covering a wide spectral range in absorption and fluorescence, cyanine dyes are highly attractive as fluorescence probes for bioanalytical applications, such as clinical diagnostics and life sciences. The dyes DY-635 and DY-647 are two typical representatives of this class of dyes and can be covalently attached to biologically relevant molecules. Because of their excitation wavelength above 630nm these dyes are especially suited for bioanalytical applications. In this work the spectroscopic properties of DY-635 and DY-647 in biomimetic and biological model systems were studied by absorption and fluorescence spectroscopy techniques: time-correlated single photon counting to determine fluorescence decay behavior, fluorescence correlation spectroscopy (FCS) to observe diffusion and photophysical deactivation processes, and fluorescence anisotropy to study the mobility and rotational behavior of the dyes in the respective model system. The well characterized system biotin-streptavidin was used as a model system for protein-ligand interactions. Binding to streptavidin resulted in significant changes in the steady-state photophysical characteristics of DY-635B and DY-647. These spectral changes are attributed to dye-dye interactions and the formation of H-dimers. Previous studies have demonstrated, that binding of biotin alters the conformation of streptavidin. Based on the evaluation of time-resolved anisotropy data in this study it was shown that these structural changes result in strong hindrance of the rotational freedom of DY-635B. For mixtures of unbound and streptavidin-bound dyes the fluorescence anisotropy decay curves are found to be nonexponential. In this case the concept of an associated anisotropy were applied which allowed discrimination between contributions from different microenvironments. As a second model system, micelles of the nonionic surfactant Tween-20 were used. Micelles are one of the simplest systems to mimic the microenvironment of a biological membrane. Incorporation of the dyes had no effect on the micelle size. The diffusion coefficient of the dyes, obtained by fluorescence correlation spectroscopy (FCS), reflects the translational behavior of Tween-20 micelles. The mobility of the dyes in the Tween-20 micelles was studied by time-resolved fluorescence anisotropy. In addition to a „wobbling“ motion ccording to the wobble-in-a-cone model, a lateral diffusion of the dyes along the micelle surface is described. KW - Cyaninfarbstoffe KW - Fluoreszenz-Korrelations-Spektroskopie KW - Fluoreszenzanisotropie KW - Biotin-Streptavidin KW - Assoziatives Anisotropiemodell KW - cyanine dyes KW - fluorescence correlation spectroscopy KW - fluorescence anisotropy KW - biotin streptavidin KW - associated anisotropy Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-48478 ER - TY - THES A1 - Rasch, Claudia T1 - Optische Spektroskopie zum Nachweis von Schimmelpilzen und deren Mykotoxine T1 - Optical spectroscopy for the determination of mould and mycotoxins N2 - Gesunde sowie qualitativ hochwertige Nahrungsmittel sind wichtige Voraussetzungen, um einerseits die Lebensmittelsicherheit entlang der Wertschöpfungskette (Wachstum, Verarbeitung, Lagerung und Transport) und andererseits einen vorbeugenden Verbraucherschutz zu gewährleisten. Die Belastung der Nahrung mit Rückständen jeglicher Art war in letzter Zeit häufig Mittelpunkt heftiger öffentlicher Diskussionen. Zahlreiche Untersuchungen haben gezeigt, dass unter bestimmten Bedingungen durch Pilze gebildete Giftstoffe, so genannte Mykotoxine, die Ernteprodukte belasten und es bei deren Verzehr durch Menschen oder Tiere zu Vergiftungen kommen kann. Die FAO schätzt, dass etwa 25% der Weltproduktion von Nahrungsmitteln mit Mykotoxinen kontaminiert und in 20% der Getreideernte der Europäischen Union messbare Konzentrationen an Mykotoxinen detektierbar sind. Damit die Lebensmittelsicherheit weiterhin gewährleistet bleibt, werden neben den Routinemethoden schnellere und zerstörungsfreie Methoden benötigt, um die Lebensmittel direkt vor Ort auf Schimmelpilze und deren Mykotoxine zu untersuchen. In dieser Arbeit wird das Potenzial von ausgewählten optisch-basierten spektroskopischen Methoden für die in-situ bzw. in-line Detektion von Schimmelpilzen sowie Mykotoxinen in Getreide(produkten) untersucht. Es werden Absorptions- und Reflexionsmethoden einerseits und Fluoreszenztechniken andererseits eingesetzt. Die spektroskopischen Methoden werden dabei auf Proben unterschiedlicher Komplexität angewandt - beginnend mit der Untersuchung der photophysikalischen Eigenschaften der reinen Mykotoxine in Lösung über künstlich mit verschiedenen Mykotoxinen kontaminierten Getreideproben bis hin zu mit Pilzen befallenem Getreide und hochveredelte Lebensmittel (Wein und Bier) als Proben höchster Komplexität. N2 - Problems of food safety have led to an increasing concern regarding contamination of foods and feeds with mycotoxins and the relevant toxigenic fungi, mainly Aspergillus, Penicillium and Fusarium genera. There is a real need for rapid, sensitive and inexpensive sensors for the detection of toxigenic fungi and mycotoxins, both in the field and after harvest in order to obtain real-time monitoring data on contamination and this assist in food safety assessment. This will result in an enormous cost saving to the farmers as well as to agro-food industry through the prevention and reduction of product recalls and reduced treatment costs. The German Ministry of Education and Research (BMBF) has provided funding of more than 1.9 million Euros from July 2006 to December 2009 for the large joint project "ProSeso.net2" on the development of innovative sensor-based techniques and processes in the field of food quality and safety. In this research-project "Exploration of sustainability potentials by use of sensor-based technologies and integrated assessment models in the production chain of plant related food" 13 partners from universities, non-university institutions and industry cooperate within seven subprojects. The expected results shall contribute to maintain freshness and improve safety of the food production chain. In the subproject “Indicators and sensor technology for the identification of mycotoxin producing fungi in the processing of grain” spectroscopic methods are tested for in-situ and in-line detection of moulds and/or mycotoxins. This presentation focuses on some possible spectroscopic methods for the rapid detection of mycotoxins and fungi on grains. Methods based on one- and two-photon-induced fluorescence spectroscopy are highly attractive because of their outstanding sensitivity and selectivity. In order to utilize a fluorescence technique for the analysis of the mycotoxins in food and feedstuff as well as for basic research on the fungal metabolism, the photochemistry and photophysics of the mycotoxins and fungi need to be elucidated in detail, especially the influence of solvent parameters such as polarity and pH value. Consequently, for a sensitive and selective spectroscopic analysis, it is indispensable to take the specific photophysic of the known mycotoxins into account in order to minimize serious limitations upon sensitivity, selectivity, and accuracy of a potential fluorescence-based sensing application. The spectroscopic techniques are complemented by chemometric tools (Principle Component Analysis) to extract the desired chemical information, e.g. with respect to presence of contaminations. The combination of data obtained from different spectroscopic methods (such as optimal excitation and emission wavelength, fluorescence decay times, and fluorescence quantum efficiency) on the one hand side and NIR spectroscopy on the other side shows promising results for the qualitative as well as quantitative identification of mycotoxins grains. Moreover, NIR reflectance spectra yield additional information on ingredients, moisture content, and the presence (or absence) of fungi in the sample. KW - Mykotoxine KW - Schimmelpilze KW - Fluoreszenz KW - Chemometrie KW - Zweiphotonenanregung KW - mycotoxins KW - mould KW - fluorescence KW - chemometrics KW - Two-Photon-Absorption Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-50746 ER - TY - THES A1 - Thesen, Manuel Wolfram T1 - Synthese und Charakterisierung von phosphoreszenten Terpolymeren und nichtkonjugierten Matrixpolymeren für effiziente polymere Leuchtdioden T1 - Synthesis and characterization of phosphoreszent terpolymers and nonconjugated matrixpolymers for efficient polymer light emitting diodes N2 - Mit Seitenkettenpolystyrenen wurde ein neues Synthesekonzept für phosphoreszente polymere LED-Materialien aufgestellt und experimentell verifiziert. Zunächst erfolgten auf Grundlage strukturell einfacher Verbindungen Untersuchungen zum Einfluss von Spacern zwischen aktiven Seitengruppen und dem Polystyrenrückgrat. Es wurden Synthesemethoden für die Monomere etabliert, durch die aktive Elemente - Elektronen- und Lochleiter - mit und ohne diesen Spacer zugänglich sind. Durch Kombination dieser Monomere waren unter Hinzunahme von polymerisierbaren Iridium-Komplexen in unterschiedlicher Emissionswellenlänge statistische Terpolymere darstellbar. Es wurde gezeigt, dass die Realisierung bestimmter Verhältnisse zwischen Loch-, Elektronenleiter und Triplettemitter in ausreichender Molmasse möglich ist. Die Glasstufen der Polymere zeigten eine deutliche Strukturabhängigkeit. Auf die Lage der Grenzorbitale übten die Spacer nahezu keinen Einfluss aus. Die unterschiedlichen Makromoleküle kamen in polymeren Licht emittierenden Dioden (PLEDs) zum Einsatz, wobei ein deutlicher Einfluss der Spacereinheiten auf die Leistungscharakteristik der PLEDs festzustellen war: Sowohl Effizienz, Leuchtdichte wie auch Stromdichte waren durch den Einsatz der kompakten Makromoleküle ohne Spacer deutlich höher. Diese Beobachtungen begründeten sich hauptsächlich in der Verwendung der aliphatischen Spacer, die den Anteil im Polymer erhöhten, der keine Konjugation und damit elektrisch isolierende Eigenschaften besaß. Diese Schlussfolgerungen waren mit allen drei realisierten Emissionsfarben grün, rot und blau verifizierbar. Die besten Messergebnisse erzielte eine PLED aus einem grün emittierenden und spacerlosen Terpolymer mit einer Stromeffizienz von etwa 28 cd A-1 (bei 6 V) und einer Leuchtdichte von 3200 cd m-2 (bei 8 V). Ausgehend von obigen Ergebnissen konnten neue Matrixmaterialien aus dem Bereich verdampfbarer Moleküle geringer Molmasse in das Polystyrenseitenkettenkonzept integriert werden. Es wurden Strukturvariationen sowohl von loch- wie auch von elektronenleitenden Verbindungen als Homopolymere dargestellt und als molekular dotierte Systeme in PLEDs untersucht. Sieben verschiedene lochleitende Polymere mit Triarylamin-Grundkörper und drei elektronendefizitäre Polymere auf der Basis von Phenylbenzimidazol konnten erfolgreich in den Polymeransatz integriert werden. Spektroskopische und elektrochemische Untersuchungen zeigten kaum eine Veränderung der Charakteristika zwischen verdampfbaren Molekülen und den dargestellten Makromolekülen. Diese ladungstransportierenden Makro-moleküle wurden als polymere Matrizes molekular dotiert und lösungsbasiert zu Einschicht-PLEDs verarbeitet. Als aussichtsreichstes Lochleiterpolymer dieser Reihe, mit einer Strom-effizenz von etwa 33 cd A-1 (bei 8 V) und einer Leuchtdichte von 6700 cd m-2 (bei 10 V), stellte sich ein Triarylaminderivat mit Carbazolsubstituenten heraus. Als geeignetstes Matrixmaterial für die Elektronenleitung wurde ein meta-verknüpftes Di-Phenylbenzimidazol ausfindig gemacht, das in der PLED eine Stromeffizienz von etwa 20 cd A-1 (bei 8 V) und eine Leuchtdichte von 7100 cd m-2 (bei 10 V) erzielte. Anschließend wurden die geeignetsten Monomere zu Copolymeren kombiniert: Die lochleitende Einheit bildete ein carbazolylsubstituiertes Triarylamin und die elektronen-leitende Einheit war ein disubstituiertes Phenylbenzimidazol. Dieses Copolymer diente im Folgenden dazu, PLEDs zu realisieren und die Leistungsdaten mit denen eines Homopolymer-blends zu vergleichen, wobei der Blend die bessere Leistungscharakteristik zeigte. Mit dem Homopolymerblend waren Bauteileffizienzen von annähernd 30 cd A-1 (bei 10 V) und Leuchtdichten von 6800 cd m-2 neben einer Verringerung der Einsatzspannung realisierbar. Für die abschließende Darstellung bipolarer Blockcopolymere wurde auf die Nitroxid-vermittelte Polymerisation zurückgegriffen. Mit dieser Technik waren kontrollierte radikalische Polymersiationen mit ausgewählten Monomeren in unterschiedlichen Block-längen durchführbar. Diese Blockcopolymere kamen als molekular dotierte Matrizes in phosphoreszenten grün emittierenden PLEDs zum Einsatz. Die Bauteile wurden sowohl mit statistischen Copolymeren, wie auch mit Homopolymerblends in gleicher Zusammensetzung aber unterschiedlichem Polymerisationsgrad hinsichtlich der Leistungscharakteristik verglichen. Kernaussage dieser Untersuchungen ist, dass hochmolekulare Systeme eine bessere Leistungscharakteristik aufweisen als niedermolekulare Matrizes. Über Rasterkraft-mikroskopie konnte eine Phasenseparation in einem Größenbereich von etwa 10 nm für den hochmolekularen Homopolymerblend nachgewiesen werden. Für die Blockcopolymere war es nicht möglich eine Phasenseparation zu beobachten, was vorwiegend auf deren zu geringe Blocklänge zurückgeführt wurde. N2 - A new synthetic approach for the synthesis of side chain polystyrenes was established and their use as phosphorescent polymers for polymer light emitting diodes (PLEDs) is shown by experiments. An assay was introduced to clarify influences on electroluminescent behavior for RGB-colored phosphorescent terpolymers with N,N-Di-p-tolyl-aniline as hole-transporting unit, 2-(4-biphenyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole (tert-BuPBD) as electron-transporting unit, and different iridium complexes in RGB-colors as triplet emitting materials. All monomers were attached with spacer moieties to the “para” position of a polystyrene. PLEDs were built to study the electro-optical behavior of these materials. The gist was a remarkable influence of hexyl-spacer units to the PLED performance. For all three colors only very restricted PLED performances were found. In comparison RGB-terpolymers were synthesized with directly attached charge transport materials to the polymer backbone. For this directly linked systems efficiencies were 28 cd A−1 @ 6 V (green), 4.9 cd A−1 @ 5 V (red) and 4.3 cd A−1 @ 6 V (bluish). In summary it is assumed that an improved charge percolation pathways regarding to the higher content of semiconducting molecules and an improved charge transfer to the phosphorescent dopand in the case of the copolymers without spacers are responsible for the better device performance comparing the copolymers with hexyl spacers. It was found that the approach of the directly connected charge transport materials at the nonconjugated styrene polymer backbone is favored for further investigations as shown in the following. A series of styrene derived monomers with triphenylamine-based units, and their polymers have been synthesized and compared with the well-known structure of polymer of N,N′-bis(3-methylphenyl)-N,N′-diphenylbenzidine with respect to their hole-transporting behavior in PLEDs. A vinyltriphenylamine structure was selected as a basic unit, functionalized at the para positions with the following side groups: diphenylamine, 3-methylphenyl-aniline, 1- and 2-naphthylamine, carbazole, and phenothiazine. The polymers are used in PLEDs as host polymers for blend systems. It is demonstrated that two polymers are excellent hole-transporting matrix materials for these blend systems because of their good overall electroluminescent performances and their comparatively high glass transition temperatures. For the carbazole-substituted polymer (Tg = 246 °C), a luminous efficiency of 35 cd A−1 and a brightness of 6700 cd m−2 at 10 V is accessible. The phenothiazine-functionalized polymer (Tg = 220 °C) shows nearly the same outstanding PLED behavior. Hence, both these polymers outperform the well-known polymer of N,N′-bis(3-methylphenyl)-N,N′-diphenylbenzidine, showing only a luminous efficiency of 7.9 cd A−1 and a brightness of 2500 cd m−2 (10 V). Furthermore, novel styrene functionalized monomers with phenylbenzo[d]imidazole units and the corresponding homopolymers are prepared. The macromolecules are used as matrices for phosphorescent dopants to prepare PLEDs. The devices exhibit current efficiencies up to 38.5 cd A−1 at 100 cd m−2 and maximum luminances of 7400 cd m−2 at 10 V. Afterwards the most efficient monomers of this investigations were combined and statistical copolymers were synthesized. As hole-transporting monomer the carbazole substituted triarylamine and as electron-transporting monomer a disubstituted phenylbenzoimidazole was selected. This statistical copolymer was used in the following as matrix material for phosporescent PLEDs and the device performance was compared with a matrix system of a polymer blend matrix system of corresponding homopolymers. With this homopolymer blend efficiencies of about 30 cd A-1 at 10 V and luminances of 6800 cd m-2 beside a decreased onset voltage were realized. Finally bipolar blockcopolymers of structural basic monomers were synthesized via nitroxide mediated polymerization. With these technique and the chosen hole- and electron-transporting monomers a controlled radical polymerization was realized leading to blockcopolymers in different block lengths. These blockcopolymers were used as molecular doped matrix systems in green phosphoreszent PLEDs. The devices were compared in regard to their performances with PLEDs made of statistical copolymers and homopolymer blends. It was found that high molecular systems show a better device performance compared to low molecular polymer matrices. With atomic force microscopy it is shown that a phase separation takes place for the high molecular blend of homopolymers. For the synthesized blockcopolymers no phase separation could be verified, mainly because of the comparatively low molecular weight of these systems. KW - phosphoreszente Terpolymere KW - Elektrolumineszenz KW - organische Licht emittierende Diode KW - Ladungstransport KW - bipolare Blockcopolymere KW - phosphorescent Terpolymers KW - electroluminsecence KW - organic light emitting diode KW - charge transport KW - bipolar blockcopolymers Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-51709 ER - TY - THES A1 - Stöckle, Silke T1 - Thin liquid films with nanoparticles and rod-like ions as models for nanofluidics T1 - Dünne flüssige Filme mit Nanopartikeln und stäbchenförmigen Ionen als Nanofluidische Modelle N2 - With the rise of nanotechnology in the last decade, nanofluidics has been established as a research field and gained increased interest in science and industry. Natural aqueous nanofluidic systems are very complex, there is often a predominance of liquid interfaces or the fluid contains charged or differently shaped colloids. The effects, promoted by these additives, are far from being completely understood and interesting questions arise with regards to the confinement of such complex fluidic systems. A systematic study of nanofluidic processes requires designing suitable experimental model nano – channels with required characteristics. The present work employed thin liquid films (TLFs) as experimental models. They have proven to be useful experimental tools because of their simple geometry, reproducible preparation, and controllable liquid interfaces. The thickness of the channels can be adjusted easily by the concentration of electrolyte in the film forming solution. This way, channel dimensions from 5 – 100 nm are possible, a high flexibility for an experimental system. TLFs have liquid IFs of different charge and properties and they offer the possibility to confine differently shaped ions and molecules to very small spaces, or to subject them to controlled forces. This makes the foam films a unique “device” available to obtain information about fluidic systems in nanometer dimensions. The main goal of this thesis was to study nanofluidic processes using TLFs as models, or tools, and to subtract information about natural systems plus deepen the understanding on physical chemical conditions. The presented work showed that foam films can be used as experimental models to understand the behavior of liquids in nano – sized confinement. In the first part of the thesis, we studied the process of thinning of thin liquid films stabilized with the non – ionic surfactant n – dodecyl – β – maltoside (β – C₁₂G₂) with primary interest in interfacial diffusion processes during the thinning process dependent on surfactant concentration 64. The surfactant concentration in the film forming solutions was varied at constant electrolyte (NaCl) concentration. The velocity of thinning was analyzed combining previously developed theoretical approaches. Qualitative information about the mobility of the surfactant molecules at the film surfaces was obtained. We found that above a certain limiting surfactant concentration the film surfaces were completely immobile and they behaved as non – deformable, which decelerated the thinning process. This follows the predictions for Reynolds flow of liquid between two non – deformable disks. In the second part of the thesis, we designed a TLF nanofluidic system containing rod – like multivalent ions and compared this system to films containing monovalent ions. We presented first results which recognized for the first time the existence of an additional attractive force in the foam films based on the electrostatic interaction between rod – like ions and oppositely charged surfaces. We may speculate that this is an ion bridging component of the disjoining pressure. The results show that for films prepared in presence of spermidine the transformation of the thicker CF to the thinnest NBF is more probable as films prepared with NaCl at similar conditions of electrostatic interaction. This effect is not a result of specific adsorption of any of the ions at the fluid surfaces and it does not lead to any changes in the equilibrium properties of the CF and NBF. Our hypothesis was proven using the trivalent ion Y3+ which does not show ion bridging. The experimental results are compared to theoretical predictions and a quantitative agreement on the system’s energy gain for the change from CF to NBF could be obtained. In the third part of the work, the behavior of nanoparticles in confinement was investigated with respect to their impact on the fluid flow velocity. The particles altered the flow velocity by an unexpected high amount, so that the resulting changes in the dynamic viscosity could not be explained by a realistic change of the fluid viscosity. Only aggregation, flocculation and plug formation can explain the experimental results. The particle systems in the presented thesis had a great impact on the film interfaces due to the stabilizer molecules present in the bulk solution. Finally, the location of the particles with respect to their lateral and vertical arrangement in the film was studied with advanced reflectivity and scattering methods. Neutron Reflectometry studies were performed to investigate the location of nanoparticles in the TLF perpendicular to the IF. For the first time, we study TLFs using grazing incidence small angle X – ray scattering (GISAXS), which is a technique sensitive to the lateral arrangement of particles in confined volumes. This work provides preliminary data on a lateral ordering of particles in the film. N2 - Mit dem Heranwachsen der Nanotechnologie in den vergangenen zehn Jahren hat sich die Nanofluidik als Forschungsbereich etabliert und erfährt wachsende Aufmerksamkeit in der Wissenschaft, sowie auch in der Industrie. Im biomedizinischen Bereich, wo intrazelluläre Prozesse häufig komplexer, nanofluidischer Natur sind, wird sich vermehrt für ein detailliertes Verständnis von nanofluidischen Prozessen interessiert, z.B. für den Einfluss von Kolloiden verschiedenster Form oder elektrischer Ladung auf die Kanäle und auf das Fließverhalten oder die Auswirkungen der Einengung von Flüssigkeiten und Kolloiden in Nanometer Geometrien. In der vorliegenden Arbeit werden dünne flüssige Filme, hinsichtlich ihrer Funktion als nanofluidische Modelle untersucht. Im ersten Teil der Arbeit wurde die Fließgeschwindigkeit des Fluids aus dem dünnen Film, abhängig von der Konzentration der filmstabilisierenden Tensidmoleküle n – Dodecyl β – D – Maltoside ( β – C₁₂G₂) bei einer konstanten Elektrolytkonzentration von 0.2 mM NaCl untersucht. Mit einem theoretischen Modell konnte das Dünnungsverhalten nachgezeichnet werden. Es wurde eine kritische Tensidkonzentration gefunden, unter der die Oberflächen lateral mobil sind und über der sie sich wie fest verhalten. Dadurch konnten wir Aufschluss darüber erlangen, wie die Oberfläche des Films unter verschiedenen Bedingungen geschaffen ist, und das in Bezug zur Verteilungsdichte der Moleküle an den Oberflächen setzen. Im weiteren wurden komplexere, nanofluidische Systeme untersucht, wobei zum einen ~ 1 nm lange, stäbchenförmige, multivalent geladene Spermidin - Moleküle die punktförmigen Elektrolyte ersetzten. Es konnte eine deutliche Veränderung der Stabilität zwischen Filmen mit und ohne Stäbchen festgestellt werden. Die Filme, mit NaCl, blieben länger in dem metastabilen „Common Film“ (CF) Zustand als die Filme, die eine vergleichbare Konzentration von Spermidin Stäbchen beinhalteten. Die Ergebnisse deuteten auf eine zusätzliche Anziehungskraft durch Brückenbildung zwischen zwei geladenen Oberflächen durch gegensätzlich geladene Stäbchenförmige Moleküle hin. Es konnte gezeigt werden, dass dieser Effekt weder ein Ergebnis von spezifischer Ionenadsorption an die Filmoberfläche war, noch ein Unterschied in den Gleichgewichtszuständen von den Dicken der CFs und der Newton Black Films (NBFs) hervorrief, was auf die korrekte Annahme der Ionenstärke in der Lösung schließen ließ. Auch in Versuchen mit ebenfalls trivalenten Ionen YCl3 wurde festgestellt, dass kein vergleichbarer Überbrückungseffekt auftritt. Die Ergebnisse wurden mit theoretischen Simulationen verglichen und es wurde eine quantitative Übereinstimmung gefunden bezüglich der Größe des Systeminternen Energiegewinns durch den Überbrückungseffekt. Desweiteren wurde das Fließverhalten von Fluiden mit Kolloiden eingeengt in Nanometer Geometrien untersucht. Für zwei verschiedene Arten von Nanopartikeln (Fe3O4 stabilisiert mit Oleinsäure und polymerstabilisierte Goldpartikel) wurde eine Verlangsamung der Fließgeschwindigkeit festgestellt. Mit einem theoretischen Modell konnte das Fließverhalten nur für enorm erhöhte Viskositätswerte des Fluids erklärt werden. Die Viskositätserhöhung wurde mit Partikelaggregaten, die den Ausfluss behindern, erklärt und diskutiert, unter der Annahme eines nicht - Newtonischen Fließverhaltens der Dispersionen. Gleichermaßen wurde die strukturelle Anordnung der Partikel in den Filmen hinsichtlich ihrer vertikalen und lateralen Verteilung untersucht. In dieser Arbeit werden vorläufige Ergebnisse präsentiert, die noch weiteren Studien bedürfen. Mit Neutronenreflexion sollte die Anordnung der Partikel orthogonal zur Oberfläche im Film analysiert werden. Eine qualitative Analyse lässt schließen, dass bei einer höheren Konzentration von Partikeln in Lösung, sich auch eine erhöhte Konzentration von Partikeln im dünnen Film befindet. Leider konnten die Daten nicht hinsichtlich der Lage der Partikel analysiert werden. Zum ersten Mal wurden dünne flüssige Filme mit Kleinwinkelröntgenstreuung unter streifendem Einfall (GISAXS) analysiert. Mit Hilfe dieser Methode sollte eine laterale Anordnung der Partikel im Film untersucht werden. Es konnten erfolgreiche Messungen durchgeführt werden und mit Hilfe der rechnergestützten Analyse konnte eine Aussage gemacht werden, dass ~ 6 nm große Teilchen in ~ 43 nm Abstand sich im Film befinden. Die Aussage bezüglich der kleinen Teilchen könnte sich auf einzelne, kleinere Partikel beziehen, allerdings könnten auch die 43 nm eine relevante Strukturgröße darstellen, da es in der Dispersion gehäuft Aggregate mit dem Durchmesser in dem Größenbereich vorliegen. Zusammenfassend können sich mit dieser Arbeit die dünnen flüssigen Filme als eine wichtige Kernmethode der Untersuchung von nanofluidischen Prozessen, wie sie häufig in der Natur vorkommen, behaupten. KW - Nanofluidik KW - Schaumfilme KW - Spermidin KW - Nanopartikel KW - Oberflächenkräfte KW - nanofluidics KW - foam films KW - spermidine KW - nanoparticles KW - interfacial forces Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-46370 ER -