TY - JOUR A1 - Rosencrantz, Sophia A1 - Tang, Jo Sing Julia A1 - Schulte-Osseili, Christine A1 - Böker, Alexander A1 - Rosencrantz, Ruben R. T1 - Glycopolymers by RAFT Polymerization as Functional Surfaces for Galectin-3 JF - Macromolecular chemistry and physics N2 - Glycan-protein interactions are essential biological processes with many disease-related modulations and variations. One of the key proteins involved in tumor progression and metastasis is galectin-3 (Gal-3). A lot of effort is put into the development of Gal-3 inhibitors as new therapeutic agents. The avidity of glycan-protein interactions is strongly enhanced by multivalent ligand presentation. Multivalent presentation of glycans can be accomplished by utilizing glycopolymers, which are polymers with pendent glycan groups. For the production of glycopolymers, glycomonomers are synthesized by a regioselective, microwave-assisted approach starting from lactose. The resulting methacrylamide derivatives are polymerized by RAFT and immobilized on gold surfaces using the trithiocarbonate group of the chain transfer agent. Surface plasmon resonance spectroscopy enables the label free kinetic characterization of Gal-3 binding to these multivalent glycopolymers. The measurements indicate oligomerization of Gal-3 upon exposure to multivalent environments and reveal strong specific interaction with the immobilized polymers. KW - galectin-3 KW - glycopolymers KW - multivalency KW - RAFT KW - surface plasmon resonance Y1 - 2019 U6 - https://doi.org/10.1002/macp.201900293 SN - 1022-1352 SN - 1521-3935 VL - 220 IS - 20 PB - Wiley-VCH CY - Weinheim ER -