TY - JOUR A1 - Reitenbach, Julija A1 - Geiger, Christina A1 - Wang, Peixi A1 - Vagias, Apostolos N. A1 - Cubitt, Robert A1 - Schanzenbach, Dirk A1 - Laschewsky, André A1 - Papadakis, Christine M. A1 - Müller-Buschbaum, Peter T1 - Effect of magnesium salts with chaotropic anions on the swelling behavior of PNIPMAM thin films JF - Macromolecules : a publication of the American Chemical Society N2 - Poly(N-isopropylmethacrylamide) (PNIPMAM) is a stimuli responsive polymer, which in thin film geometry exhibits a volume-phase transition upon temperature increase in water vapor. The swelling behavior of PNIPMAM thin films containing magnesium salts in water vapor is investigated in view of their potential application as nanodevices. Both the extent and the kinetics of the swelling ratio as well as the water content are probed with in situ time-of-flight neutron reflectometry. Additionally, in situ Fourier-transform infrared (FTIR) spectroscopy provides information about the local solvation of the specific functional groups, while two-dimensional FTIR correlation analysis further elucidates the temporal sequence of solvation events. The addition of Mg(ClO4)2 or Mg(NO3)2 enhances the sensitivity of the polymer and therefore the responsiveness of switches and sensors based on PNIPMAM thin films. It is found that Mg(NO3)2 leads to a higher relative water uptake and therefore achieves the highest thickness gain in the swollen state. Y1 - 2023 U6 - https://doi.org/10.1021/acs.macromol.2c02282 SN - 0024-9297 SN - 1520-5835 VL - 56 IS - 2 SP - 567 EP - 577 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Nchiozem-Ngnitedem, Vaderament-Alexe A1 - Sperlich, Eric A1 - Matieta, Valaire Yemene A1 - Kuete, Jenifer Reine Ngnouzouba A1 - Kuete, Victor A1 - Omer, Ejlal A. A. A1 - Efferth, Thomas A1 - Schmidt, Bernd T1 - Synthesis and bioactivity of isoflavones from ficus carica and some non-natural analogues JF - Journal of natural products : Lloydia N2 - FicucariconeD (1) and its 4 '-demethyl congener 2 are isoflavones isolated from fruits of Ficus carica that share a 5,7-dimethoxy-6-prenyl-substituted A-ring. Both naturalproducts were, for the first time, obtained by chemical synthesisin six steps, starting from 2,4,6-trihydroxyacetophenone. Key stepsare a microwave-promoted tandem sequence of Claisen- and Cope-rearrangementsto install the 6-prenyl substituent and a Suzuki-Miyaura crosscoupling for installing the B-ring. By using various boronic acids,non-natural analogues become conveniently available. All compoundswere tested for cytotoxicity against drug-sensitive and drug-resistanthuman leukemia cell lines, but were found to be inactive. The compoundswere also tested for antimicrobial activities against a panel of eightGram-negative and two Gram-positive bacterial strains. Addition ofthe efflux pump inhibitor phenylalanine-arginine-beta-naphthylamide(PA beta N) significantly improved the antibiotic activity in mostcases, with MIC values as low as 2.5 mu M and activity improvementfactors as high as 128-fold. KW - Antimicrobial activity KW - Bacteria KW - Ethers KW - Flavonoids KW - Mixtures Y1 - 2023 U6 - https://doi.org/10.1021/acs.jnatprod.3c00219 SN - 0163-3864 SN - 1520-6025 VL - 86 IS - 6 SP - 1520 EP - 1528 PB - American Chemical Society CY - Washington, DC ER - TY - THES A1 - Margraf, Johannes T. T1 - Science-driven chemical machine learning Y1 - 2023 ER - TY - JOUR A1 - Sperlich, Eric A1 - Köckerling, Martin T1 - The double cluster compound [Nb6Cl14(MeCN)(4)] [Nb6Cl14(pyz)(4)].6MeCN (Me: methyl, pyz: pyrazine) with a layered structure resulting from weak intermolecular interactions JF - Zeitschrift für Naturforschung N2 - The synthesis and the crystal structure of the double cluster compound [Nb6Cl14(MeCN)(4)][Nb6Cl14(pyz)(4)]middot6CH(3)CN are described. The synthesis is based on a partial ligand exchange reaction, which proceeds upon dissolving [Nb6Cl14(pyz)(4)]middot2CH(2)Cl(2) in acetonitrile. The compound is built up of two discrete neutral cluster units, which consist of octahedra of Nb-6 atoms coordinated by 12 edge-bridging chlorido and two terminal chlorido ligands, and four acetonitrile ligands on one and four pyrazine ligands on the other cluster unit. Co-crystallized acetonitrile molecules are also present. The single-crystal structure determination has revealed a cluster arrangement in which the [Nb6Cl14(pyz)(4)] units are connected by (halogen) lone-pair-(pyrazine) pi interactions. These lead to chains of [Nb6Cl14(pyz)(4)] clusters. These chains are further connected to cluster layers by (nitrile-halogen) dipole-dipole interactions, in which the [Nb6Cl14(MeCN)(4)] and co-crystallized MeCN molecules are also involved. These cluster layers are arranged parallel to the crystallographic {011} plane. KW - cluster KW - crystal structure KW - dipole-dipole interaction KW - halide KW - lone-pair-pi interactions KW - niobium Y1 - 2023 U6 - https://doi.org/10.1515/znb-2023-0001 SN - 0932-0776 SN - 1865-7117 VL - 78 IS - 5 SP - 279 EP - 283 PB - De Gruyter CY - Berlin ER - TY - THES A1 - Savatieiev, Oleksandr T1 - Carbon nitride semiconductors: properties and application as photocatalysts in organic synthesis N2 - Graphitic carbon nitrides (g-CNs) are represented by melon-type g-CN, poly(heptazine imides) (PHIs), triazine-based g-CN and poly(triazine imide) with intercalated LiCl (PTI/Li+Cl‒). These materials are composed of sp2-hybridized carbon and nitrogen atoms; C:N ratio is close to 3:4; the building unit is 1,3,5-triazine or tri-s-triazine; the building units are interconnected covalently via sp2-hybridized nitrogen atoms or NH-moieties; the layers are assembled into a stack via weak van der Waals forces as in graphite. Due to medium band gap (~2.7 eV) g-CNs, such as melon-type g-CN and PHIs, are excited by photons with wavelength ≤ 460 nm. Since 2009 g-CNs have been actively studied as photocatalysts in evolution of hydrogen and oxygen – two half-reactions of full water splitting, by employing corresponding sacrificial agents. At the same time application of g-CNs as photocatalysts in organic synthesis has been remaining limited to few reactions only. Cumulative Habilitation summarizes research work conducted by the group ‘Innovative Heterogeneous Photocatalysis’ between 2017-2023 in the field of carbon nitride organic photocatalysis, which is led by Dr. Oleksandr Savatieiev. g-CN photocatalysts activate molecules, i.e. generate their more reactive open-shell intermediates, via three modes: i) Photoinduced electron transfer (PET); ii) Excited state proton-coupled electron transfer (ES-PCET) or direct hydrogen atom transfer (dHAT); iii) Energy transfer (EnT). The scope of reactions that proceed via oxidative PET, i.e. one-electron oxidation of a substrate to the corresponding radical cation, are represented by synthesis of sulfonylchlorides from S-acetylthiophenols. The scope of reactions that proceed via reductive PET, i.e. one-electron reduction of a substrate to the corresponding radical anion, are represented by synthesis of γ,γ-dichloroketones from the enones and chloroform. Due to abundance of sp2-hybridized nitrogen atoms in the structure of g-CN materials, they are able to cleave X-H bonds in organic molecules and store temporary hydrogen atom. ES-PCET or dHAT mode of organic molecules activation to the corresponding radicals is implemented for substrates featuring relatively acidic X-H bonds and those that are characterized by low bond dissociation energy, such as C-H bond next to the heteroelements. On the other hand, reductively quenched g-CN carrying hydrogen atom reduces a carbonyl compound to the ketyl radical via PCET that is thermodynamically more favorable pathway compared to the electron transfer. The scope of these reactions is represented by cyclodimerization of α,β-unsaturated ketones to cyclopentanoles. g-CN excited state demonstrates complex dynamics with the initial formation of singlet excited state, which upon intersystem crossing produces triplet excited state that is characterized by the lifetime > 2 μs. Due to long lifetime, g-CN activate organic molecules via EnT. For example, g-CN sensitizes singlet oxygen, which is the key intermediate in the dehydrogenation of aldoximes to nitrileoxides. The transient nitrileoxide undergoes [3+2]-cycloaddition to nitriles and gives oxadiazoles-1,2,4. PET, ES-PCET and EnT are fundamental phenomena that are applied beyond organic photocatalysis. Hybrid composite is formed by combining conductive polymers, such as poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) with potassium poly(heptazine imide) (K-PHI). Upon PET, K-PHI modulated population of polarons and therefore conductivity of PEDOT:PSS. The initial state of PEDOT:PSS is recovered upon material exposure to O2. K-PHI:PEDOT:PSS may be applied in O2 sensing. In the presence of electron donors, such as tertiary amines and alcohols, and irradiation with light, K-PHI undergoes photocharging – the g-CN material accumulates electrons and charge-compensating cations. Such photocharged state is stable under anaerobic conditions for weeks, but at the same time it is a strong reductant. This feature allows decoupling in time light harvesting and energy storage in the form of electron-proton couples from utilization in organic synthesis. The photocharged state of K-PHI reduces nitrobenzene to aniline, and enables dimerization of α,β-unsaturated ketones to hexadienones in dark. N2 - Graphitische Kohlenstoffnitride (g-CNs) werden durch g-CN vom Melonen-Typ, Poly(heptazinimide) (PHIs), g-CN auf Triazinbasis und Poly(triazinimid) mit interkaliertem LiCl (PTI/Li+Cl-) repräsentiert. Diese Materialien bestehen aus sp2-hybridisierten Kohlenstoff- und Stickstoffatomen; das C:N-Verhältnis liegt nahe bei 3:4; das Grundgerüst ist 1,3,5-Triazin oder Tri-s-Triazin; die Grundgerüste sind kovalent über sp2-hybridisierte Stickstoffatome oder NH-Moleküle miteinander verbunden; die Schichten werden über schwache van-der-Waals-Kräfte wie in Graphit zu einem Stapel zusammengefügt. Aufgrund der mittleren Bandlücke (~2,7 eV) werden g-CNs, wie z. B. g-CN vom Melonen-Typ und PHIs, durch Photonen mit einer Wellenlänge ≤ 460 nm angeregt. Seit 2009 werden g-CNs aktiv als Photokatalysatoren für die Entwicklung von Wasserstoff und Sauerstoff - zwei Halbreaktionen der vollständigen Wasserspaltung - untersucht, indem entsprechende Opferstoffe eingesetzt werden. Gleichzeitig ist die Anwendung von g-CNs als Photokatalysatoren in der organischen Synthese auf wenige Reaktionen beschränkt geblieben. Die kumulative Habilitation fasst die Forschungsarbeiten zusammen, die von der Gruppe "Innovative heterogene Photokatalyse" zwischen 2017 und 2023 auf dem Gebiet der organischen Photokatalyse mit Kohlenstoffnitrid durchgeführt wurden, die von Dr. Oleksandr Savatieiev geleitet wird. g-CN-Photokatalysatoren aktivieren Moleküle, d. h. sie erzeugen ihre reaktiveren Zwischenprodukte mit offener Schale über drei Modi: i) photoinduzierter Elektronentransfer (PET); ii) protonengekoppelter Elektronentransfer im angeregten Zustand (ES-PCET) oder direkter Wasserstoffatomtransfer (dHAT); iii) Energietransfer (EnT). Der Bereich der Reaktionen, die über oxidativen PET ablaufen, d. h. die Ein-Elektronen-Oxidation eines Substrats zum entsprechenden Radikalkation, wird durch die Synthese von Sulfonylchloriden aus S-Acetylthiophenolen dargestellt. Der Bereich der Reaktionen, die über reduktive PET ablaufen, d. h. Reduktion eines Substrats mit einem Elektron zum entsprechenden radikalischen Anion, wird durch die Synthese von γ,γ-Dichloroketonen aus Enonen und Chloroform repräsentiert. Aufgrund der zahlreichen sp2-hybridisierten Stickstoffatome in der Struktur der g-CN-Materialien können sie X-H-Bindungen in organischen Molekülen spalten und temporäre Wasserstoffatome speichern. Der ES-PCET- oder dHAT-Modus der Aktivierung organischer Moleküle zu den entsprechenden Radikalen wird bei Substraten mit relativ sauren X-H-Bindungen und solchen, die sich durch eine niedrige Bindungsdissoziationsenergie auszeichnen, wie z. B. die C-H-Bindung neben den Heteroelementen, durchgeführt. Andererseits reduziert reduktiv gequenchtes g-CN, das ein Wasserstoffatom trägt, eine Carbonylverbindung über PCET zum Ketylradikal, was im Vergleich zum Elektronentransfer der thermodynamisch günstigere Weg ist. Der Umfang dieser Reaktionen wird durch die Cyclodimerisierung von α,β-ungesättigten Ketonen zu Cyclopentanolen dargestellt. Der angeregte Zustand von g-CN zeigt eine komplexe Dynamik mit der anfänglichen Bildung eines angeregten Singulett-Zustands, der beim Übergang zwischen den Systemen einen angeregten Triplett-Zustand erzeugt, der durch eine Lebensdauer von > 2 μs gekennzeichnet ist. Aufgrund der langen Lebensdauer aktivieren g-CN organische Moleküle über EnT. So sensibilisiert g-CN beispielsweise Singulett-Sauerstoff, der das wichtigste Zwischenprodukt bei der Dehydrierung von Aldoximen zu Nitriloxiden ist. Das transiente Nitriloxid unterliegt einer [3+2]-Cycloaddition zu Nitrilen und ergibt Oxadiazole-1,2,4. PET, ES-PCET und EnT sind grundlegende Phänomene, die über die organische Photokatalyse hinaus Anwendung finden. Hybridkomposit wird durch die Kombination von leitfähigen Polymeren wie Poly(3,4-ethylendioxythiophen)polystyrolsulfonat (PEDOT:PSS) mit Kaliumpoly(heptazinimid) (K-PHI) gebildet. Nach PET modulierte K-PHI die Population der Polaronen und damit die Leitfähigkeit von PEDOT:PSS. Der Ausgangszustand von PEDOT:PSS wird wiederhergestellt, wenn das Material O2 ausgesetzt wird. K-PHI:PEDOT:PSS kann für die O2-Sensorik verwendet werden. In Gegenwart von Elektronendonatoren, wie tertiären Aminen und Alkoholen, und bei Lichteinstrahlung wird K-PHI photogeladen - das g-CN-Material sammelt Elektronen und ladungsausgleichende Kationen an. Dieser photogeladene Zustand ist unter anaeroben Bedingungen wochenlang stabil, gleichzeitig ist er aber ein starkes Reduktionsmittel. Diese Eigenschaft ermöglicht die zeitliche Entkopplung von Lichtsammlung und Energiespeicherung in Form von Elektron-Protonen-Paaren von der Nutzung in der organischen Synthese. Der photogeladene Zustand von K-PHI reduziert Nitrobenzol zu Anilin und ermöglicht die Dimerisierung von α,β-ungesättigten Ketonen zu Hexadienonen im Dunkeln. KW - carbon nitride KW - photocatalysis KW - photochemistry KW - photocharging KW - organic synthesis Y1 - 2023 ER - TY - JOUR A1 - Akampurira, Denis A1 - Akala, Hoseah M. A1 - Derese, Solomon A1 - Heydenreich, Matthias A1 - Yenesew, Abiy T1 - A new C-C linked benzophenathridine-2-quinoline dimer, and the antiplasmodial activity of alkaloids from Zanthoxylum holstzianum JF - Natural product research N2 - The CH2Cl2/MeOH (1:1) extract of Zanthoxylum holstzianum stem bark showed good antiplasmodial activity (IC50 2.5 +/- 0.3 and 2.6 +/- 0.3 mu g/mL against the W2 and D6 strains of Plasmodium falciparum, respectively). From the extract five benzophenanthridine alkaloids [8-acetonyldihydrochelerythrine (1), nitidine (2), dihydrochelerythine (3), norchelerythrine (5), arnottianamide (8)]; a 2-quinolone alkaloid [N-methylflindersine (4)]; a lignan [4,4 '-dihydroxy-3,3 '-dimethoxylignan-9,9 '-diyl diacetate (7)] and a dimer of a benzophenanthridine and 2-quinoline [holstzianoquinoline (6)] were isolated. The CH2Cl2/MeOH (1:1) extract of the root bark afforded 1, 3-6, 8, chelerythridimerine (9) and 9-demethyloxychelerythrine (10). Holstzianoquinoline (6) is new, and is the second dimer linked by a C-C bond of a benzophenanthridine and a 2-quinoline reported thus far. The compounds were identified based on spectroscopic evidence. Amongst five compounds (1-5) tested against two strains of P. falciparum, nitidine (IC50 0.11 +/- 0.01 mu g/mL against W2 and D6 strains) and norchelerythrine (IC50 value of 0.15 +/- 0.01 mu g/mL against D6 strain) were the most active. KW - Antiplasmodial KW - benzophenanthridine alkaloid KW - holstzianoquinoline; KW - rutaceae KW - Zanthoxylum holstzianum Y1 - 2022 U6 - https://doi.org/10.1080/14786419.2022.2034810 SN - 1478-6419 SN - 1478-6427 VL - 37 IS - 13 SP - 2161 EP - 2171 PB - Taylor & Francis CY - London [u.a.] ER - TY - THES A1 - Breternitz, Joachim T1 - Structural systematic investigations of photovoltaic absorber materials N2 - The direct conversion of light from the sun into usable forms of energy marks one of the central cornerstones of the change of our living from the use of fossil, non-renewable energy resources towards a more sustainable economy. Besides the necessary societal changes necessary, it is the understanding of the solids employed that is of particular importance for the success of this target. In this work, the principles and approaches of systematic-crystallographic characterisation and systematisation of solids is used and employed to allow a directed tuning of the materials properties. The thorough understanding of the solid-state forms hereby the basis, on which more applied approaches are founded. Two material systems, which are considered as promising solar absorber materials, are at the core of this work: halide perovskites and II-IV-N2 nitride materials. While the first is renowned for its high efficiencies and rapid development in the last years, the latter is putting an emphasis on true sustainability in that toxic and scarce elements are avoided. N2 - Die direkte Umwandlung der Energie der Sonne bildet einen zentralen Baustein im Umbau unserer Gesellschaft von der Nutzung fossiler, nicht nachhaltiger Energieträger zum Erreichen einer nachhaltigen Wirtschaft. Neben den gesellschaftlichen Veränderungen ist es insbesondere das Verständnis der genutzten Festkörper, das den Motor dieser Entwicklung bildet. In dieser Arbeit werden Prinzipien der systematisch-kristallographischen Untersuchung und Kategorisierung von Festkörpern genutzt, um die Eigenschaften der Materialien gezielt steuern zu können. Dabei bildet das Verständnis des kristallinen Zustands und seine Untersuchung die Basis, auf der angewandtere Forschungsansätze aufbauen. In dieser Arbeit werden vor allem zwei Materialsysteme betrachtet, die als Absorbermaterialien in Solarzellen in Betracht gezogen werden: Halid-Perowskite und II-IV-N2-Nitrid Materialien. Die ersteren zeichnen sich insbesondere durch ihre erstaunlich hohen Effizienzen und rapide Entwicklung in den letzten Jahren aus, während das letztere System in besonderer Weise auf Nachhaltigkeit optimiert ist, und giftige oder seltene Elemente zu vermeiden sucht. KW - Materials Chemistry KW - Crystallography KW - Photovoltaics Y1 - 2023 ER - TY - THES A1 - Iqbal, Zafar T1 - Interface design and characterization for stable inorganic perovskite solar cells T1 - Grenzflächendesign und- charakterisierung für stabile anorganische Perowskit-Solarzellen BT - inorganic perovskite solar cells N2 - We live in an era driven by fossil fuels. The prevailing climate change suggests that we have to significantly reduce greenhouse gas emissions. The only way forward is to use renewable energy sources. Among those, solar energy is a clean, affordable, and sustainable source of energy. It has the potential to satisfy the world’s energy demand in the future. However, there is a need to develop new materials that can make solar energy usable. Photovoltaics (PV) are devices that convert photon energy into electrical energy. The most commonly used solar cells are based on crystalline silicon. However, the fabrication process for silicon solar cells is technologically difficult and costly. Solar cells based on lead halide perovskites (PSCs) have emerged as a new candidate for PV applications since 2009. To date, PSCs have achieved 26% power-conversion-efficiency (PCE) for its single junction, and 33.7% PCE for tandem junction devices. However, there is still room for improvement in overall performance. The main challenge for the commercialization of this technology is the stability of the solar cells under operational conditions. Inorganic perovskite CsPbI3 has attracted researchers’ interest due to its stability at elevated temperatures, however, inorganic perovskites also have associated challenges, e.g. phase stability, larger voltage loss compared to their organic-inorganic hybrid counterparts, and interface energy misalignment. The most efficient inorganic perovskite solar cell is stable for up to a few hundred hours while the most stable device in the field of inorganic PSCs reported so far is at 17% PCE. This suggests the need for improvement of the interfaces for enhanced open circuit voltage (VOC), and optimization of the energy alignment at the interfaces. This dissertation presents the study on interfaces between the perovskite layer and hole transport layer (HTL) for stable CsPbI3 solar cells. The first part of the thesis presents an investigation of the CsPbI3 film annealing environment and its subsequent effects on the perovskite/HTL interface dynamics. Thin films annealed in dry air were compared with thin films annealed in ambient air. Synchrotron-based hard X-ray spectroscopy (HAXPES) measurements reveal that annealing in ambient air does not have an adverse effect; instead, those samples undergo surface band bending. This surface band modification induces changes in interface charge dynamics and, consequently, an improvement in charge extraction at the interfaces. Further, transient surface photovoltage (tr-SPV) simulations show that air-annealed samples exhibit fewer trap states compared to samples annealed in dry air. Finally, by annealing the CsPbI3 films in ambient air, a PCE of 19.8% and Voc of 1.23 V were achieved for an n-i-p structured device. Interface engineering has emerged as a strategy to extract the charge and optimize the energy alignment in perovskite solar cells (PSCs). An interface with fewer trap states and energy band levels closer to the selective contact helps to attain improved efficiencies in PSCs. The second part of the thesis presents a design for the CsPbI3/HTM interface. In this work, an interface between CsPbI3 perovskite and its hole selective contact N2,N2,N2′,N2′,N7,N7,N7′,N7′-octakis(4-methoxyphenyl)-9,9′-spirobi[9H-fluorene]-2,2′,7,7′-tetramine(Spiro-OMeTAD), realized by trioctylphosphine oxide (TOPO), a dipole molecule is introduced. On top of a perovskite film well-passivated by n-octyl ammonium Iodide (OAI), it created an upward surface band-bending at the interface byTOPO that optimizes energy level alignment and enhances the extraction of holes from the perovskite layer to the hole transport material. Consequently, a Voc of 1.2 V and high-power conversion efficiency (PCE) of over 19% were achieved for inorganic CsPbI3 perovskite solar cells. In addition, the work also sheds light on the interfacial charge-selectivity and the long-term stability of CsPbI3 perovskite solar cells. The third part of the thesis extends the previous studies to polymeric poly(3-hexylthiophene-2,5-diyl) (P3HT) as HTL. The CsPbI3/P3HT interface is critical due to high non-radiative recombination. This work presents a CsPbI3/P3HT interface modified with a long-chain alkyl halide molecule, n-hexyl trimethyl ammonium bromide (HTAB). This molecule largely passivates the CsPbI3 perovskite surface and improves the charge extraction across the interface. Consequently, a Voc of over 1.00 V and 14.2% PCE were achieved for CsPbI3 with P3HT as HTM. Overall the results presented in this dissertation introduce and discuss methods to design and study the interfaces in CsPbI3-based solar cells. This study can pave the way for novel interface designs between CsPbI3 and HTM for charge extraction, efficiency and stability. N2 - Wir leben in einem Zeitalter, das von fossilen Brennstoffen geprägt ist. Der fortschreitende Klimawandel erfordert eine merkliche Reduktion der Treibhausgasemissionen. Der einzige Weg hin zu einer nachhaltigen Energiewirtschaft ist die Implementierung erneuerbarer Energiequellen. Solarenergie hat das Potential, den Energiebedarf der Welt langfristig auf saubere und kostengünstige Weise zu decken. Es müssen jedoch neue Materialien zur Marktreife entwickelt werden, die die Solarenergie nutzbar machen können. In der Photovoltaik (PV) wird Lichtenergie in elektrische Energie umwandelt, wobei die gängisten Solarzellen aus kristallinem Silizium bestehen. Die Herstellung von Silizium-Solarzellen ist jedoch technisch aufwending und kostspielig. Deshalb haben sich Solarzellen auf Basis von Bleihalogenid-Perowskiten (engl. perovskite solar cells, PSCs) seit 2009 als mögliche Alternative zur Siliziumtechnologie entwickelt. Bisweilen konnten Wirkungsgrade (engl. power conversion efficiency, PCE) von 26% in einem einzelnen Halbleiterübergang und von 33.7% in einem Tandemübergang erzielt werden. Diese Werte sind jedoch steigerbar und werden regelmäßig übertroffen. Die größte Herausfoderung für die Entwicklung dieser Technologie ist die Stabilität der Solarzellen unter Betriebsbedingungen. Der anorganische Perowskit CsPbI3 ist aufgrund seiner Stabilität bei hohen Temperaturen deshalb besonders interessant für die Forschung, obwohl das Material seine eigenen Herausforderungen birgt, wie zum Beispiel seine Phaseninstabilität, größere Leerlaufspannungsverluste im Vergleich zu seinen organisch-anorganisch-hybriden Analoga und Fehlaurichtung der Energiebänder an der Grenzfläche. Die Stabilität der effizientesten Solarzelle auf CsPbI3-Basis liegt bei einigen hundert Stunden, während die stabilste Solarzelle einen Wirkungsgrad von nunmehr 17% erzielt. Dies deutet auf die Notwendigkeit hin, die Grenzflächen zu den angrenzenden ladungsselektiven Kontakten zu verbessern – mit dem Ziel, die Leerlaufspannung (engl. open-circuit voltage, VOC) zu erhöhen und die Ausrichtung der Energiebänder an den Grenzflächen zu optimieren. Diese Dissertation befasst sich mit der Untersuchung der Grenzflächen zwischen der Perowskitschicht und der Lochtransportschicht (engl. hole transport layer, HTL) für stabile CsPbI3-Solarzellen. Im ersten Teil der Arbeit werden die Temperbedingungen für CsPbI3-Dünnfilme und ihre Auswirkungen auf die Ladungsträgerdynamik an der Perowskit/HTL-Grenzfläche untersucht. Dünnfilme, die in trockener Atmosphäre getempert wurden, wurden mit Dünnfilmen verglichen, die in Standardatmosphäre getempert wurden. Synchrotrongestützte Messungen der Photoelektronenspektroskopie mit harter Röntgenstrahlung (engl. hard X-ray photoelectron spectrpscopy, HAXPES) zeigen, dass das Tempern in Umgebungsluft keine nachteiligen Auswirkungen hat; stattdessen erfahren jene Proben eine Verbiegung der Energiebänder an der Oberfläche. Diese Modifikation der Oberflächenbänder führt zu Veränderungen in der Grenzflächenladungsdynamik und in der Folge zu einer Verbesserung der Ladungsträgerextraktion über die Grenzfläche. Darüber hinaus zeigen Simulationen der transienten Oberflächenphotospannung (engl. transient surface photovoltage, trSPV), dass luftgetemperte Proben im Vergleich zu trockengetemperten Proben weniger Fallenzustände aufweisen. Letztlich wurde durch das Tempern der CsPbI3-Filme in Umgebungsluft eine PCE von 19,8% und ein VOC von 1,23 V für eine Solarzelle in n-i-p-Architektur erreicht. Die Manipulation der Grenzflächen ist eine Strategie, um die Extraktion von Ladungsträgern und die Ausrichtung der Energiebänder in PSCs zu kontrollieren. Eine Grenzfläche mit geringerer Dichte an Fallenzuständen sowie der Fähigkeit, das Energiebandniveau näher an das des selektiven Kontakts zu verschieben, trägt zur Verbesserung des Wirkungsgrads von PSCs bei. Im zweiten Teil der Arbeit wird ein Design für die CsPbI3/HTM-Grenzfläche vorgeschlagen. Dabei wird das Dipolmolekül Trioctylphosphinoxid (TOPO) an der Grenzfläche zwischen CsPbI3-Perowskit und dem lochselektiven Kontakt N2, N2, N2′, N2′, N7, N7, N7′, N7′-octakis(4-Methoxyphenyl) -9,9′-Spirobi[9H-Fluoren] -2,2′,7,7′-Tetramin (spiro-OMeTAD) eingeführt. Auf einem mit n-Octylammoniumiodid (OAI) passivierten Perowskitfilm erzeugt TOPO eine nach oben gerichtete Oberflächenbandverkrümmung, die die Ausrichtung der Energieniveaus optimiert und die Extraktion von Löchern aus CsPbI3 in den HTL verbessert. Infolgedessen wurden in den hergestellten Solarzellen ein VOC von 1,2 V und eine PCE von über 19% erzielt. Darüber hinaus nimmt die Arbeit auch die Ladungsträgerselektivität an der Grenzfläche und die Langzeitstabilität von CsPbI3-Perowskit-Solarzellen in den Fokus. Der dritte Teil der Arbeit erweitert die bisherigen Untersuchungen auf das Polymer Poly-(3-hexylthiophen-2,5-diyl) (P3HT) als HTL. Die CsPbI3/P3HT-Grenzfläche ist aufgrund der hohen nicht-radiativen Rekombination kritisch. In dieser Arbeit wird eine CsPbI3/P3HT-Grenzfläche vorgestellt, die mit einem langkettigen Alkylhalogenidmolekül, n-Hexyltrimethylammoniumbromid (HTAB), modifiziert wurde. Dieses Molekül passiviert die CsPbI3-Perowskit-Oberfläche weitgehend und verbessert die Ladungsträgerextraktion an der Grenzfläche. Für CsPbI3 mit P3HT als HTM konnte ein VOC von über 1,00 V und 14,2% PCE erreicht werden. Insgesamt werden in dieser Dissertation Methoden zur Entwicklung und Untersuchung von Grenzflächen für Solarzellen auf CsPbI3-Basis vorgestellt und diskutiert. Diese Studie kann Wege für neuartiges Grenzflächendesign zwischen CsPbI3 und HTM im Hinblick auf Ladungsträgerextraktion, Effizienz und Stabilität eröffnen. KW - CsPbI3 KW - interfaces KW - perovskite solar cells KW - CsPbI3 KW - Grenzflächen KW - Perowskit-Solarzellen Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-618315 ER - TY - THES A1 - Chemura, Sitshengisiwe T1 - Optical spectroscopy on lanthanide-modified nanomaterials for performance monitoring T1 - Optische Spektroskopie an Lanthanid-modifizierten Nanomaterialien zur Leistungsüberwachung N2 - Lanthanide based ceria nanomaterials are important practical materials due to their redox properties that are useful in technology and life sciences. This PhD thesis examined various properties and potential for catalytic and bio-applications of Ln3+-doped ceria nanomaterials. Ce1-xGdxO2-y: Eu3+, gadolinium doped ceria (GDC) (0 ≤ x ≤ 0.4) nanoparticles were synthesized by flame spray pyrolysis (FSP) and studied, followed by 15 % CexZr1-xO2-y: Eu3+|YSZ (0 ≤ x ≤ 1) nanocomposites. Furthermore, Ce1-xYb xO2-y (0.004 ≤ x ≤ 0.22) nanoparticles were synthesized by thermal decomposition and characterized. Finally, CeO2-y: Eu3+ nanoparticles were synthesized by a microemulsion method, biofunctionalized and characterized. The studies undertaken presents a novel approach to structurally elucidate ceria-based nanomaterials by way of Eu3+ and Yb3+ spectroscopy and processing the spectroscopic data with the multi-way decomposition method PARAFAC. Data sets of the three variables: excitation wavelength, emission wavelength and time were used to perform the deconvolution of spectra. GDC nanoparticles from FSP are nano-sized and of roughly cubic shape and crystal structure (Fm3̅m). Raman data revealed four vibrational modes exhibited by Gd3+ containing samples whereas CeO2-y: Eu3+ displays only two. The room temperature, time-resolved emission spectra recorded at λexcitation = 464 nm show that Gd3+ doping results in significantly altered emission spectra compared to pure ceria. The PARAFAC analysis for the pure ceria samples reveals two species; a high-symmetry species and a low-symmetry species. The GDC samples yield two low-symmetry spectra in the same experiment. High-resolution emission spectra recorded at 4 K after probing the 5D0-7F0 transition revealed additional variation in the low symmetry Eu3+ sites in pure ceria and GDC. The data of the Gd3+-containing samples indicates that the average charge density around the Eu3+ ions in the lattice is inversely related to Gd3+ and oxygen vacancy concentration. The particle crystallites of the 773 K and 1273 K annealed Yb3+ -ceria nanostructure materials are nano-sized and have a cubic fluorite structure with four Raman vibrational modes. Elemental maps clearly show that cluster formation occurs for 773 K annealed with high Yb3+ ion concentration from 15 mol % in the ceria lattice. These clusters are destroyed with annealing to 1273 K. The emission spectra observed from room temperature and 4 K measurements for the Ce1-xYb xO2-y samples have a manifold that corresponds to the 2F5/2-2F7/2 transition of Yb3+ ions. Some small shifts are observed in the Stark splitting pattern and are induced by the variations of the crystal field influenced by where the Yb3+ ions are located in the crystal lattices in the samples. Upon mixing ceria with high Yb3+ concentrations, the 2F5/2-2F7/2 transition is also observed in the Stark splitting pattern, but the spectra consist of two broad high background dominated peaks. Annealing the nanomaterials at 1273 K for 2 h changes the spectral signature as new peaks emerge. The deconvolution yielded luminescence decay kinetics as well as the accompanying luminescence spectra of three species for each of the low Yb3+ doped ceria samples annealed at 773 K and one species for the 1273 K annealed samples. However, the ceria samples with high Yb3+ concentration annealed at the two temperatures yielded one species with lower decay times as compared to the Yb3+ doped ceria samples after PARAFAC analysis. Through the calcination of the nanocomposites at two high temperatures, the evolution of the emission patterns from specific Eu3+ lattice sites to indicate structural changes for the nanocomposites was followed. The spectroscopy results effectively complemented the data obtained from the conventional techniques. Annealing the samples at 773 K, resulted in amorphous, unordered domains whereas the TLS of the 1273 K nanocomposites reveal two distinct sites, with most red shifted Eu3+ species coming from pure Eu3+ doped ZrO2 on the YSZ support. Finally, for Eu3+ doped ceria, successful transfer from hydrophobic to water phase and subsequent biocompatibility was achieved using ssDNA. PARAFAC analysis for the Eu3+ in nanoparticles dispersed in toluene and water revealed one Eu3+ species, with slightly differing surface properties for the nanoparticles as far as the luminescence kinetics and solvent environments were concerned. Several functionalized nanoparticles conjugated onto origami triangles after hybridization were visualized by atomic force microscopy (AFM). Putting all into consideration, Eu3+ and Yb3+ spectroscopy was used to monitor the structural changes and determining the feasibility of the nanoparticle transfer into water. PARAFAC proves to be a powerful tool to analyze lanthanide spectra in crystalline solid materials and in solutions, which are characterized by numerous Stark transitions and where measurements usually yield a superposition of different emission contributions to any given spectrum. N2 - Ceroxid-Nanomaterialien auf Lanthanidbasis sind aufgrund ihrer Redox-Eigenschaften wichtige praktische Materialien, die in der Technik und den Biowissenschaften von Nutzen sind. In dieser Dissertation wurden verschiedene Eigenschaften und das Potenzial für katalytische und biologische Anwendungen von Ln3+-dotierten Ceroxid-Nanomaterialien untersucht. Ce1-xGdxO2-y:Eu3+, gadoliniumdotierte Ceroxid (GDC) (0.0 ≤ x ≤ 0.4) Nanopartikel wurden durch Flammenspray-Pyrolyse (FSP) synthetisiert und untersucht, gefolgt von 15 % CexZr1-xO2-y:Eu3+|YSZ (0 ≤ x ≤ 1) Nanokompositen. Außerdem wurden Ce1-xYbxO2-y (0.004 ≤ x ≤ 0.22) Nanopartikel durch thermische Zersetzung synthetisiert und charakterisiert. Schließlich wurden CeO2-y:Eu3+-Nanopartikel durch eine Mikroemulsionsmethode synthetisiert, biofunktionalisiert und charakterisiert. In den durchgeführten Studien wird ein neuartiger Ansatz zur Strukturaufklärung von Nanomaterialien auf Ceroxidbasis mittels Eu3+- und Yb3+-Spektroskopie und Verarbeitung der spektroskopischen Daten mit der Zerlegungsmethode PARAFAC vorgestellt. Für die Entfaltung der Spektren wurden Datensätze mit den drei Variablen Anregungswellenlänge, Emissionswellenlänge und Zeit verwendet. GDC-Partikel aus FSP sind Nanometer groß und besitzen eine grob kubische Form und Kristallstruktur (Fm3̅m). Raman-Daten zeigten vier Schwingungsmoden bei Gd3+-haltigen Proben, während CeO2-y:Eu3+ nur zwei aufweist. Die bei Raumtemperatur aufgezeichneten zeitaufgelösten Emissionsspektren bei λAnregung = 464 nm zeigen, dass die Gd3+-Dotierung im Vergleich zu reinem Ceroxid zu deutlich veränderten Emissionsspektren führt. Die PARAFAC-Analyse für die reinen Ceroxidproben zeigt zwei Spezies: eine hochsymmetrische Spezies und eine niedrigsymmetrische Spezies. Die GDC-Proben liefern im selben Experiment zwei niedrigsymmetrische Species. Hochauflösende Emissionsspektren, die bei 4 K nach der Untersuchung des 5D0-7F0-Übergangs aufgezeichnet wurden, ergaben zusätzliche Variationen bei den niedrigsymmetrischen Eu3+-Stellen in reinem Ceroxid und GDC. Die Daten der Gd3+-haltigen Proben deuten darauf hin, dass die durchschnittliche Ladungsdichte um die Eu3+-Ionen im Gitter in umgekehrter Beziehung zur Gd3+- und Sauerstoffleerstellen-Konzentration steht. Die Partikelkristallite der bei 773 K und 1273 K geglühten Yb3+-Ceroxid-Nanostrukturen sind nanoskalig und haben eine kubische Fluoritstruktur mit vier Raman-Schwingungsmoden. Elementverteilungen zeigen deutlich, dass sich bei 773 K, geglüht mit einer hohen Yb3+-Ionenkonzentration ab 15 Mol-% im Ceroxidgitter, Cluster bilden. Diese Cluster werden beim Glühen auf 1273 K zerstört. Die Emissionsspektren, die bei Messungen bei Raumtemperatur und 4 K für die Ce1-xYbxO2-y-Proben beobachtet wurden, weisen vielfältige Banden auf, die dem 2F5/2-2F7/2-Übergang der Yb3+-Ionen entspricht. Es werden einige kleine Verschiebungen im Stark-Aufspaltungsmuster beobachtet, die durch die Variationen des Kristallfeldes verursacht werden, in Abhängigkeit der Positionen der Yb3+-Ionen in den Kristallgittern. Beim Mischen von Ceroxid mit hohen Yb3+-Konzentrationen wird der 2F5/2-2F7/2-Übergang auch im Stark-Aufspaltungsmuster beobachtet, aber die Spektren bestehen aus zwei breiten, vom Hintergrund dominierten Peaks. Das Ausglühen der Nanomaterialien bei 1273 K für 2 Stunden verändert die spektrale Signatur, da neue Emissionsbanden entstehen. Die Entfaltung ergab die Lumineszenz-Abklingkinetik sowie die begleitenden Lumineszenzspektren von drei Spezies für jede der niedrig Yb3+-dotierten Ceroxidproben, die bei 773 K geglüht wurden, und eine Spezies für die bei 1273 K geglühten Proben. Die bei beiden Temperaturen geglühten Ceroxidproben mit hoher Yb3+-Konzentration ergaben jedoch eine Spezies mit geringeren Abklingzeiten als die Yb3+-dotierten Ceroxidproben nach der PARAFAC-Analyse. Durch die Kalzinierung der Nanokomposite bei zwei hohen Temperaturen wurde die Entwicklung der Emissionsmuster von spezifischen Eu3+-Gitterplätzen verfolgt, die auf strukturelle Veränderungen der Nanokomposite hinweisen. Die Ergebnisse der Spektroskopie ergänzten die mit den konventionellen Techniken gewonnenen Daten. Das Ausglühen der Proben bei 773 K führte zu amorphen, ungeordneten Domänen, während die totalen Lumineszenzpektren der Nanokomposite bei 1273 K zwei unterschiedliche Stellen erkennen lassen, wobei die meisten rotverschobenen Eu3+-Spezies von reinem Eu3+-dotiertem ZrO2 auf dem YSZ-Träger stammen. Schließlich wurde für Eu3+-dotiertes Ceroxid ein erfolgreicher Transfer von der hydrophoben in die Wasserphase und eine anschließende Biokompatibilität mit ssDNA erreicht. Die PARAFAC-Analyse für Eu3+ in Nanopartikeln, die in Toluol und Wasser dispergiert wurden, ergab eine Eu3+-Spezies mit leicht unterschiedlichen Oberflächeneigenschaften der Nanopartikel, was die Lumineszenzkinetik und die Lösungsmittelumgebung betraf. Mehrere funktionalisierte Nanopartikel, die nach der Hybridisierung auf Origami-Dreiecken konjugiert waren, wurden mit Hilfe der Rasterkraftmikroskopie (AFM) sichtbar gemacht. Die Eu3+- und Yb3+-Spektroskopie wurde eingesetzt, um die strukturellen Veränderungen zu überwachen und die Möglichkeit des Transfers der Nanopartikel in Wasser zu bestimmen. PARAFAC erweist sich als ein leistungsfähiges Instrument zur Analyse von Lanthanidenspektren in kristallinen Feststoffen und in Lösungen, die durch zahlreiche Stark-Übergänge gekennzeichnet sind und bei denen Messungen in der Regel eine Überlagerung verschiedener Emissionsbeiträge zu einem bestimmten Spektrum ergeben. KW - cerium oxide KW - europium KW - luminescence KW - PARAFAC KW - ytterbium KW - species KW - Ceroxid KW - Lumineszenz KW - Nanokomposite KW - Spezies Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-619443 ER - TY - THES A1 - Hildebrandt, Jana T1 - Studies on nanoplastics for the preparation of reference materials T1 - Untersuchungen an Nanoplastik für die Herstellung von Referenzmaterialien N2 - The present work focuses on the preparation and characterisation of various nanoplastic reference material candidates. Nanoplastics are plastic particles in a size range of 1 − 1000 nm. The term has emerged in recent years as a distinction from the larger microplastic (1 − 1000 μm). Since the properties of the two plastic particles differ significantly due to their size, it is important to have nanoplastic reference material. This was produced for the polymer types polypropylene (PP) and polyethylene (PE) as well as poly(lactic acid) (PLA). A top-down method was used to produce the nanoplastic for the polyolefins PP and PE (Section 3.1). The material was crushed in acetone using an Ultra-Turrax disperser and then transferred to water. This process produces reproducible results when repeated, making it suitable for the production of a reference material candidate. The resulting dispersions were investigated using dynamic and electrophoretic light scattering. The dispersion of PP particles gave a mean hydrodynamic diameter Dh = 180.5±5.8 nm with a PDI = 0.08±0.02 and a zeta potential ζ = −43.0 ± 2.0 mV. For the PE particles, a diameter Dh = 344.5 ± 34.6 nm, with a PDI = 0.39 ± 0.04 and a zeta potential of ζ = −40.0 ± 4.2 mV was measured. This means that both dispersions are nanoplastics, as the particles are < 1000 nm. Furthermore, the starting material of these polyolefin particles was mixed with a gold salt and thereby the nanoplastic production was repeated in order to obtain nanoplastic particles doped with gold, which should simplify the detection of the particles. In addition to the top-down approach, a bottom-up method was chosen for the PLA (Section 3.2). Here, the polymer was first dissolved in THF and stabilised with a surfactant. Then water was added and THF evaporated, leaving an aqueous PLA dispersion. This experiment was also investigated using dynamic light scattering and, when repeated, yielded reproducible results, i. e. an average hydrodynamic diameter of Dh = 89.2 ± 3.0 nm. Since the mass concentration of PLA in the dispersion is known due to the production method, a Python notebook was tested for these samples to calculate the number and mass concentration of nano(plastic) particles using the MALS results. Similar to the plastic produced in Section 3.1, gold was also incorporated into the particle, which was achieved by adding a dispersion of gold clusters with a diameter of D = 1.15 nm in an ionic liquid (IL) in the production process. Here, the preparation of the gold clusters in the ionic liquid 1-ethyl-3-methylimidazolium dicyanamide ([Emim][DCA]) represented the first use of an IL both as a reducing agent for gold and as a solvent for the gold clusters. Two volumes of gold cluster dispersion were added during the PLA particle synthesis. The addition of the gold clusters leads to much larger particles. The nanoPLA with 0.8% Au has a diameter of Dh = 198.0 ± 10.8 nm and the nanoPLA with 4.9% Au has a diameter of Dh = 259.1 ± 23.7 nm. First investigations by TEM imaging show that the nanoPLA particles form hollow spheres when gold clusters are added. However, the mechanism leading to these structures remains unclear. N2 - Die vorliegende Arbeit beschäftigt sich mit der Herstellung und Charakterisierung verschiedener Nanoplastikreferenzmaterialkandidaten. Um Nanoplastik handelt es sich bei Plastikpartikeln in einem Größenbereich von 1 − 1000 nm. Der Begriff hat sich in den letzten Jahren als Abgrenzung zu dem größeren Mikroplastik (1 − 1000 μm) herausgebildet. Da sich die Eigenschaften der beiden Plastikpartikel auf Grund ihrer Größe deutlich unterscheiden, ist es wichtig, Nanoplastikreferenzmaterial zur Verfügung zu stellen. Dieses wurde für die Polymertypen Polypropylen (PP) und Polyethylen (PE) sowie Polymilchsäure (PLA) hergestellt. Dabei wurde für die Polyolefine PP und PE eine top-down Methode für die Herstellung des Nanoplastiks angewandt (Abschnitt 3.1). Dazu wurde das Material mithilfe eines Ultra-Turrax Dispergiergeräts in Aceton zerkleinert und danach in Wasser überführt. Dieser Prozess führt bei Wiederholung zu ähnlichen Ergebnissen, was ihn passend für die Herstellung eines Referenzmaterialkandidaten macht. Die entstandenen Dispersionen wurden mit der dynamischen und elektrophoretischen Lichtstreuung untersucht. Die Dispersion von PP-Partikeln ergab einen mittleren hydrodynamischen Durchmesser Dh = 180.5 ± 5.8 nm mit einem PDI = 0.08 ± 0.02 und einem Zetapotential ζ = −43.0 ± 2.0 mV. Bei den PE-Partikeln wurde ein Durchmesser Dh = 344.5 ± 34.6 nm, mit einem PDI = 0.39 ± 0.04 und einem Zetapotential von ζ = −40.0 ± 4.2 mV gemessen. Damit handelt es sich bei beiden Dispersionen um Nanoplastik, da die Partikel < 1000 nm sind. Des Weiteren wurde das Ausgangsmaterial dieser Polyolefinpartikel mit einem Goldsalz versetzt und damit die Nanoplastikherstellung wiederholt, um mit Gold dotierte Nanoplastikpartikel zu erhalten, die die Detektion der Partikel vereinfachen sollen. Neben dem Top-down Ansatz wurde für das PLA eine Bottom-up Methode gewählt (Abschnitt 3.2). Hierbei wurde das Polymer in THF zunächst gelöst und mit einem Tensid stabilisiert. Dann wurde Wasser hinzugegeben und das THF verdampft, sodass eine wässrige PLADispersion übrig blieb. Auch dieses Experiment wurde mithilfe der dynamischen Lichtstreuung untersucht und führte bei Wiederholung zu reproduzierbaren Ergebnissen von einem mittleren hydrodynamischen Durchmesser von Dh = 89.2 ± 3.0 nm. Da durch die Herstellungsweise die Massenkonzentration von PLA in der Dispersion bekannt ist, wurde für diese Proben ein Python Notebook getestet, das die Zahlen- und Massenkonzentration von Nano(plastik)partikeln mithilfe der MALS-Ergebnisse errechnen soll. Ähnlich wie für das in Abschnitt 3.1 hergestellte Plastik wurde auch hier Gold in den Partikel eingearbeitet, was durch die Zugabe einer Dispersion von Goldclustern mit einem Durchmesser von D = 1.15 nm in einer ionischen Flüssigkeit (IL) im Herstellungsprozess gelang. Dabei stellte die Herstellung der Goldcluster in der ionischen Flüssigkeit 1-Ethyl-3-methylimidazolium-dicyanamid ([Emim][DCA]) die erstmalige Verwendung einer IL sowohl als Reduktionsmittel für Gold als auch als Lösungsmittel für die Goldcluster dar. Während der Synthese der PLA-Partikel wurden zwei unterschiedliche Volumina der Goldcluster-Dispersion hinzugefügt. Die Zugabe von Goldclustern führt zu wesentlich größeren Partikeln. Das nanoPLA mit 0.8% Au hat einen Durchmesser von Dh = 198.0 ± 10.8 nm und das nanoPLA mit 4.9% Au hat einen Durchmesser von Dh = 259.1 ± 23.7 nm. Dabei zeigen erste Untersuchungen mittels TEM-Bildgebung, dass die nanoPLA-Partikel Hohlkugeln bilden, wenn Goldcluster hinzugefügt werden. Jedoch ist der Mechanismus, der zu diesen Strukturen führt, noch unklar. KW - nanoplastic KW - Nanoplastik KW - Rerenzmaterial KW - reference material KW - polyolefin KW - Polyolefin KW - Polymilchsäure KW - Poly(lactic acid) Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-617102 ER - TY - THES A1 - Schneider, Helen T1 - Reactive eutectic media based on ammonium formate for the valorization of bio-sourced materials T1 - Reaktive eutektische Medien auf Basis von Ammoniumformiat zur Aufwertung von biobasierten Substanzen N2 - In the last several decades eutectic mixtures of different compositions were successfully used as solvents for vast amount of chemical processes, and only relatively recently they were discovered to be widely spread in nature. As such they are discussed as a third liquid media of the living cell, that is composed of common cell metabolites. Such media may also incorporate water as a eutectic component in order to regulate properties such as enzyme activity or viscosity. Taking inspiration form such sophisticated use of eutectic mixtures, this thesis will explore the use of reactive eutectic media (REM) for organic synthesis. Such unconventional media are characterized by the reactivity of their components, which means that mixture may assume the role of the solvent as well as the reactant itself. The thesis focuses on novel REM based on ammonium formate and investigates their potential for the valorization of bio-sourced materials. The use of REM allows the performance of a number of solvent-free reactions, which entails the benefits of a superior atom and energy economy, higher yields and faster rates compared to reactions in solution. This is evident for the Maillard reaction between ammonium formate and various monosaccharides for the synthesis of substituted pyrazines as well as for a Leuckart type reaction between ammonium formate and levulinic acid for the synthesis of 5-methyl-2-pyrrolidone. Furthermore, reaction of ammonium formate with citric acid for the synthesis of yet undiscovered fluorophores, shows that synthesis in REM can open up unexpected reaction pathways. Another focus of the thesis is the study of water as a third component in the REM. As a result, the concept of two different dilution regimes (tertiary REM and in REM in solvent) appears useful for understanding the influence of water. It is shown that small amounts of water can be of great benefit for the reaction, by reducing viscosity and at the same time increasing reaction yields. REM based on ammonium formate and organic acids are employed for lignocellulosic biomass treatment. The thesis thereby introduces an alternative approach towards lignocellulosic biomass fractionation that promises a considerable process intensification by the simultaneous generation of cellulose and lignin as well as the production of value-added chemicals from REM components. The thesis investigates the generated cellulose and the pathway to nanocellulose generation and also includes the structural analysis of extracted lignin. Finally, the thesis investigates the potential of microwave heating to run chemical reactions in REM and describes the synergy between these two approaches. Microwave heating for chemical reactions and the use of eutectic mixtures as alternative reaction media are two research fields that are often described in the scope of green chemistry. The thesis will therefore also contain a closer inspection of this terminology and its greater goal of sustainability. N2 - Ein eutektisches System beschreibt eine homogene Mischung verschiedener Substanzen, welche bei einer einzigen Temperatur schmilzt und dabei einen Schmelzpunkt aufweist der unterhalb der Schmelzpunkte der einzelnen Komponenten liegt. Solche Gemische können aus simplen organischen Substanzen gebildet werden und haben deshalb in den letzten Jahrzehnten große Aufmerksamkeit als neuartige Lösungsmittel erhalten. Mittlerweile wird ihr Nutzung für eine Vielzahl chemischer Prozesse erforscht. Zudem wurde Entdeckt das solche Gemische auch in der Natur Verbreitung finden. In diesem Zuge werden sie z.B. als drittes flüssiges Medium der lebenden Zelle diskutiert, welches durch eutektische Gemische von gewöhnlichen Zellmetaboliten gebildet wird. Sie können dabei auch Wasser als eutektische Komponente enthalten, um Eigenschaften wie Enzymaktivität oder Viskosität zu regulieren. Inspiriert durch diesen raffinierten Einsatz eutektischer Gemische untersucht diese Arbeit die Verwendung reaktiver eutektischer Medien (REM) für die chemische Anwendung. Solche unkonventionellen Medien zeichnen sich durch die Reaktivität ihrer Komponenten aus, was bedeutet, dass das Gemisch sowohl die Rolle des Lösungsmittels als auch des Reaktanten selbst übernehmen kann. Die Arbeit konzentriert sich auf neuartige REM auf Basis von Ammoniumformiat und untersucht deren Potenzial für die Nutzung von bio-basierten Substanzen. Die Verwendung von REM ermöglicht die Durchführung einer Reihe lösungsmittelfreier Reaktionen, was im Vergleich zu Reaktionen in Lösung die Vorteile einer besseren Atomökonomie, höhere Ausbeuten und schnellere Reaktionsgeschwindigkeiten mit sich bringt. Dies zeigt sich an der Maillard-Reaktion zwischen Ammoniumformiat und verschiedenen Monosacchariden zur Synthese substituierter Pyrazine sowie an der Leuckart-Reaktion zwischen Ammoniumformiat und Lävulinsäure zur Synthese von 5-Methyl-2-pyrrolidon. Darüber hinaus zeigt die Reaktion von Ammoniumformiat mit Zitronensäure zur Synthese noch unentdeckter Fluorophore, dass die Synthese in REM bisher unerschlossene Reaktionswege eröffnen kann. Ein weiterer Schwerpunkt der Arbeit ist die Untersuchung von Wasser als dritte Komponente im REM. Daher erscheint das Konzept zweier unterschiedlicher Verdünnungsregime (tertiäres REM und REM im Lösungsmittel) nützlich für das Verständnis des Einflusses von Wasser. Es zeigt sich, dass kleine Mengen Wasser von großem Nutzen für die Reaktion sein können, indem sie die Viskosität senken und gleichzeitig die Reaktionsausbeuten erhöhen. Für den Aufschluss von Lignocellulose werden REM auf Basis von Ammoniumformiat und organischen Säuren eingesetzt. Die Arbeit stellt damit einen neuen Ansatz für das Konzept der Bioraffinerie vor, der eine erhebliche Prozessintensivierung durch die gleichzeitige Erzeugung von Cellulose, Lignin sowie die Herstellung von Chemikalien aus REM-Komponenten verspricht. Die Arbeit untersucht die erzeugte Cellulose, sowie die Bedingungen zur Erzeugung von Nanocellulose und umfasst die Strukturanalyse von extrahiertem Lignin. Abschließend untersucht die Arbeit das Potenzial der Mikrowellenenergie zum Erhitzen chemischer Reaktionen in REM und beschreibt die Synergie zwischen diesen beiden Ansätzen. Mikrowellentechnologie für chemische Reaktionen und die Verwendung eutektischer Gemische als alternative Reaktionsmedien sind zwei Forschungsfelder, die häufig im Rahmen der Grünen Chemie beschrieben werden. Die Arbeit beinhaltet daher auch eine genauere Betrachtung dieser Terminologie und ihres übergeordneten Ziels der Nachhaltigkeit. KW - solvent-free reactions KW - deep eutectic solvents KW - microwave synthesis KW - green chemistry KW - biorefinery KW - deoxyfructosazine KW - citrazinic acid KW - Bioraffinerie KW - Citrazinsäure KW - stark eutektisches Lösungsmittel KW - Deoxyfructosazin KW - Grüne Chemie KW - Mikrowellensynthese KW - lösungsmittelfreie Synthese Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-613024 ER - TY - THES A1 - Pan, Xuefeng T1 - Soft-template directed functional composite nanomaterials N2 - Soft-template strategy enables the fabrication of composite nanomaterials with desired functionalities and structures. In this thesis, soft templates, including poly(ionic liquid) nanovesicles (PIL NVs), self-assembled polystyrene-b-poly(2-vinylpyridine) (PS-b-P2VP) particles, and glycopeptide (GP) biomolecules have been applied for the synthesis of versatile composite particles of PILs/Cu, molybdenum disulfide/carbon (MoS2/C), and GP-carbon nanotubes-metal (GP-CNTs-metal) composites, respectively. Subsequently, their possible applications as efficient catalysts in two representative reactions, i.e. CO2 electroreduction (CO2ER) and reduction of 4-nitrophenol (4-NP), have been studied, respectively. In the first work, PIL NVs with a tunable particle size of 50 to 120 nm and a shell thickness of 15 to 60 nm have been prepared via one-step free radical polymerization. By increasing monomer concentration for polymerization, their nanoscopic morphology can evolve from hollow NVs to dense spheres, and finally to directional worms, in which a multi-lamellar packing of PIL chains occurred in all samples. The obtained PIL NVs with varied shell thickness have been in situ functionalized with ultra-small Cu nanoparticles (Cu NPs, 1-3 nm) and subsequently employed as the electrocatalysts for CO2ER. The hollow PILs/Cu composite catalysts exhibit a 2.5-fold enhancement in selectivity towards C1 products compared to the pristine Cu NPs. This enhancement is primarily attributed to the strong electronic interactions between the Cu NPs and the surface functionalities of PIL NVs. This study casts new aspects on using nanostructured PILs as novel electrocatalyst supports in efficient CO2 conversion. In the second work, a novel approach towards fast degradation of 4-NP has been developed using porous MoS2/C particles as catalysts, which integrate the intrinsically catalytic property of MoS2 with its photothermal conversion capability. Various MoS2/C composite particles have been prepared using assembled PS-b-P2VP block copolymer particles as sacrificed soft templates. Intriguingly, the MoS2/C particles exhibit tailored morphologies including pomegranate-like, hollow, and open porous structures. Subsequently, the photothermal conversion performance of these featured particles has been compared under near infrared (NIR) light irradiation. When employing the open porous MoS2/C particles as the catalyst for the reduction of 4-NP, the reaction rate constant has increased by 1.5-fold under light illumination. This catalytic enhancement mainly results from the open porous architecture and photothermal conversion performance of the MoS2 particles. This proposed strategy offers new opportunities for efficient photothermal-assisted catalysis. In the third work, a facile and green approach towards the fabrication of GP-CNTs-metal composites has been proposed, which utilizes a versatile GP biomolecule both as a stabilizer for CNTs in water and as a reducing agent for noble metal ions. The abundant hydrogen bonds in GP molecules bestow the formed GP-CNTs with excellent plasticity, enabling the availability of polymorphic CNTs species ranging from dispersion to viscous paste, gel, and even dough by increasing their concentration. The GP molecules can reduce metal precursors at room temperature without additional reducing agents, enabling the in situ immobilization of metal NPs (e.g. Au, Ag, and Pd) on the CNTs surface. The combination of excellent catalytic property of Pd NPs with photothermal conversion capability of CNTs makes the GP-CNTs-Pd composite a promising catalyst for the efficient degradation of 4-NP. The obtained composite displays a 1.6-fold increase in conversion under NIR light illumination in the reduction of 4-NP, mainly owing to the strong light-to-heat conversion effect of CNTs. Overall, the proposed method opens a new avenue for the synthesis of CNTs composite as a sustainable and versatile catalyst platform. The results presented in the current thesis demonstrate the significance of using soft templates for the synthesis of versatile composites with tailored nanostructure and functionalities. The investigation of these composite nanomaterials in the catalytic reactions reveals their potential in the development of desired catalysts for emerging catalytic processes, e.g. photothermal-assisted catalysis and electrocatalysis. N2 - Die Weiche-Vorlagen-Strategie ermöglicht die Herstellung von zusammengesetzten Nanomaterialien mit gewünschten Funktionalitäten und Strukturen. In dieser Arbeit wurden weiche Vorlagen, darunter Poly(ionische Flüssigkeit) -Nanovesikeln (PIL-NVs), selbstorganisierte Polystyrol-b-Poly(2-Vinylpyridin)-Partikeln (PS-b-P2VP) und Glykopeptid (GP)-Biomoleküle verwendet, um vielseitige Kompositen aus PILs/Cu, Molybdändisulfid/Kohlenstoff (MoS2/C) bzw. GP-Kohlenstoffnanoröhren -Metall (GP- CNTs- Metall) zu synthetisieren. Anschließend wurden ihre möglichen Anwendungen als effiziente Katalysatoren in zwei repräsentativen Reaktionen, d. h. CO2-Elektroreduktion (CO2ER) und Reduktion von 4-Nitrophenol (4-NP), untersucht. Im ersten Abschnitt wurden PIL-NVs mit einer einstellbaren Partikelgröße von 50 bis 120 nm und einer Schalendicke von 15 bis 60 nm durch einstufige radikalische Polymerisation hergestellt. Durch Erhöhung der Monomerkonzentration für die Polymerisation kann sich ihre nanoskopische Morphologie von hohlen NVs zu dichten Kugeln und schließlich zu gerichteten Schnecken entwickeln, wobei in allen Proben eine multilamellare Packung von PIL-Ketten auftritt. Die erhaltenen PIL-NVs mit unterschiedlicher Schalendicke wurden durch ultrakleinen Cu-Nanopartikeln (Cu-NPs, 1-3 nm) funktionalisiert und anschließend als Elektrokatalysatoren für CO 2ER eingesetzt. Die PILs/Cu-Komposit-Elektrokatalysatoren zeigen eine 2,5-fache Steigerung der Selektivität gegenüber C 1-Produkten im Vergleich zu den unbehandelten Cu-NPs. Diese Verbesserung wird in erster Linie auf die starken elektronischen Wechselwirkungen zwischen den Cu-NPs und den Oberflächenfunktionalitäten der PIL -NVs zurückgeführt. Diese Studie wirft neue Aspekte auf die Verwendung nanostrukturierter PILs als neuartige Elektrokatalysatorträger für eine effiziente CO2-Umwandlung. Im zweiten Abschnitt wurde ein neuartiger Ansatz für den schnellen Abbau von 4 -NP entwickelt, bei dem poröse MoS 2/C-Partikeln als Katalysatoren verwendet werden, die die intrinsische katalytische Eigenschaft von MoS2 mit seiner photothermischen Umwandlungsfähigkeit verbinden. Verschiedene MoS2/C-Verbundpartikeln wurden unter Verwendung von zusammengesetzten PS-b-P2VP Blockcopolymerpartikeln als geopferte weiche Vorlagen hergestellt. Erstaunlicherweise weisen die MoS2/C-Partikeln maßgeschneiderte Morphologien auf, darunter eine granatapfe lartige, hohle und offenporige Struktur. Anschließend wurde die photothermische Umwandlungsleistung dieser Partikeln unter Bestrahlung von Nahinfrarotlicht (NIR) verglichen. Bei der Verwendung der offenporigen MoS2-Teilchen als Katalysator für die Reduktion von 4 -NP hat sich die Reaktionsgeschwindigkeitskonstante unter Lichtbeleuchtung um das 1,5-fache erhöht. Diese katalytische Verbesserung ist hauptsächlich auf die offenporige Architektur und die photothermische Umwandlungsleistung der MoS2-Partikeln zurückzuführen. Diese vorgeschlagene Strategie bietet neue Möglichkeiten für eine effiziente photothermisch unterstützte Katalyse. Im dritten Abschnitt wird ein einfacher und umweltfreundlicher Ansatz für die Herstellung von GP-CNTs-Metall-Verbundwerkstoffen vorgeschlagen, bei dem ein vielseitiges GP- Biomolekül sowohl als Stabilisator für CNTs in Wasser auch als Reduktionsmittel für Edelmetallionen eingesetzt wird. Die zahlreichen Wasserstoffbrüc kenbindungen in den GP- Moleküle verleihen den gebildeten GP-CNTs eine ausgezeichnete Plastizität, die es ermöglicht, polymorphe CNT - Spezies zu erhalten, die von einer Dispersion über eine visko se Paste und ein Gel bis hin zu einem Teig reichen, wenn man ihre Konzentration erhöht. Die GP -Moleküle können Metallvorläufer bei Raumtemperatur ohne zusätzliche Reduktionsmittel reduzieren und ermöglichen so die In -situ- Immobilisierung von Metall-NPs (z. B. Au, Ag und Pd) auf der Oberfläche der CNTs. Die Kombination der hervorragenden katalytischen Eigenschaften von Pd-NPs mit der photothermischen Umwandlungsfähigkeit von CNTs macht den GP -CNTs-Pd- Verbundstoff zu einem vielversprechenden Katalysator für d en effizienten Abbau von 4- NP. Das erhaltene Komposit zeigt eine 1,6-fache Steigerung der Umwandlung unter NIR- Licht- Beleuchtung, wenn es als Katalysator bei der Reduktion von 4-NP verwendet wird, was hauptsächlich auf den starken Licht -Wärme -Umwandlungseffekt der CNTs zurückzuführen ist. Insgesamt eröffnet die vorgeschlagene Methode einen neuen Weg für die Synthese von CNT-Verbundwerkstoffen als nachhaltige und vielseitige Katalysatorplattform. Die in dieser Arbeit vorgestellten Ergebnisse zeigen, wie wichtig die Verwendung weicher Templates für die Synthese vielseitiger Verbundwerkstoffe mit maßgeschneiderter Nanostruktur und Funktionalitäten ist. Die Untersuchung dieser Komposit -Nanomaterialien in katalytischen Reaktionen zeigt ihr Potenzial für die Entwicklung gewünschter Katalysatoren für neue katalytische Prozesse, z. B. für die Elektrokatalyse und die photothermisch unterstützte Katalyse. KW - nanocomposite KW - soft template KW - block copolymer KW - poly(ionic liquid) KW - glycopeptide KW - catalyst KW - Nanokomposit KW - weiche Vorlage KW - Blockcopolymer KW - Poly(ionische Flüssigkeit) KW - Glykopeptid KW - Katalysator Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-612709 ER - TY - JOUR A1 - Hu, Neng A1 - Lin, Li A1 - Metwalli, Ezzeldin A1 - Bießmann, Lorenz A1 - Philipp, Martine A1 - Hildebrand, Viet A1 - Laschewsky, André A1 - Papadakis, Christine M. A1 - Cubitt, Robert A1 - Zhong, Qi A1 - Müller-Buschbaum, Peter T1 - Kinetics of water transfer between the LCST and UCST thermoresponsive blocks in diblock copolymer thin films monitored by in situ neutron reflectivity JF - Advanced materials interfaces N2 - The kinetics of water transfer between the lower critical solution temperature (LCST) and upper critical solution temperature (UCST) thermoresponsive blocks in about 10 nm thin films of a diblock copolymer is monitored by in situ neutron reflectivity. The UCST-exhibiting block in the copolymer consists of the zwitterionic poly(4((3-methacrylamidopropyl)dimethylammonio)butane-1-sulfonate), abbreviated as PSBP. The LCST-exhibiting block consists of the nonionic poly(N-isopropylacrylamide), abbreviated as PNIPAM. The as-prepared PSBP80-b-PNIPAM(400) films feature a three-layer structure, i.e., PNIPAM, mixed PNIPAM and PSBP, and PSBP. Both blocks have similar transition temperatures (TTs), namely around 32 degrees C for PNIPAM, and around 35 degrees C for PSBP, and with a two-step heating protocol (20 degrees C to 40 degrees C and 40 degrees C to 80 degrees C), both TTs are passed. The response to such a thermal stimulus turns out to be complex. Besides a three-step process (shrinkage, rearrangement, and reswelling), a continuous transfer of D2O from the PNIPAM to the PSBP block is observed. Due to the existence of both, LCST and UCST blocks in the PSBP80-b-PNIPAM(400 )film, the water transfer from the contracting PNIPAM, and mixed layers to the expanding PSBP layer occurs. Thus, the hydration kinetics and thermal response differ markedly from a thermoresponsive polymer film with a single LCST transition. KW - block copolymer KW - dual thermoresponsive KW - kinetic water transfer KW - neutron KW - reflectivity KW - thin film Y1 - 2022 U6 - https://doi.org/10.1002/admi.202201913 SN - 2196-7350 VL - 10 IS - 3 PB - Wiley-VCH CY - Weinheim ER - TY - THES A1 - Fortes Martín, Rebeca T1 - Water-in-oil microemulsions as soft-templates to mediate nanoparticle interfacial assembly into hybrid nanostructures T1 - Wasser-in-Öl Mikroemulsionen als Soft-Templat für die Grenzfläche-Anordnung von Nanopartikeln in hybride Nanostrukturen T1 - Microemulsiones de aceite-en-agua como estructuras templadas blandas para el ensamblaje de nanoparticulas en su interfase dando nanoestructuras híbridas N2 - Hybrid nanomaterials offer the combination of individual properties of different types of nanoparticles. Some strategies for the development of new nanostructures in larger scale rely on the self-assembly of nanoparticles as a bottom-up approach. The use of templates provides ordered assemblies in defined patterns. In a typical soft-template, nanoparticles and other surface-active agents are incorporated into non-miscible liquids. The resulting self-organized dispersions will mediate nanoparticle interactions to control the subsequent self-assembly. Especially interactions between nanoparticles of very different dispersibility and functionality can be directed at a liquid-liquid interface. In this project, water-in-oil microemulsions were formulated from quasi-ternary mixtures with Aerosol-OT as surfactant. Oleyl-capped superparamagnetic iron oxide and/or silver nanoparticles were incorporated in the continuous organic phase, while polyethyleneimine-stabilized gold nanoparticles were confined in the dispersed water droplets. Each type of nanoparticle can modulate the surfactant film and the inter-droplet interactions in diverse ways, and their combination causes synergistic effects. Interfacial assemblies of nanoparticles resulted after phase-separation. On one hand, from a biphasic Winsor type II system at low surfactant concentration, drop-casting of the upper phase afforded thin films of ordered nanoparticles in filament-like networks. Detailed characterization proved that this templated assembly over a surface is based on the controlled clustering of nanoparticles and the elongation of the microemulsion droplets. This process offers versatility to use different nanoparticle compositions by keeping the surface functionalization, in different solvents and over different surfaces. On the other hand, a magnetic heterocoagulate was formed at higher surfactant concentration, whose phase-transfer from oleic acid to water was possible with another auxiliary surfactant in ethanol-water mixture. When the original components were initially mixed under heating, defined oil-in-water, magnetic-responsive nanostructures were obtained, consisting on water-dispersible nanoparticle domains embedded by a matrix-shell of oil-dispersible nanoparticles. Herein, two different approaches were demonstrated to form diverse hybrid nanostructures from reverse microemulsions as self-organized dispersions of the same components. This shows that microemulsions are versatile soft-templates not only for the synthesis of nanoparticles, but also for their self-assembly, which suggest new approaches towards the production of new sophisticated nanomaterials in larger scale. N2 - Hybride Nanomaterialen ermöglichen die Kombination von individuellen Eigenschaften jeder Art von Nanopartikeln. Einige Strategien für die Herstellung neuer großskaliger Nanostrukturen beruhen auf der Selbstassemblierung von Nanopartikeln über einen Bottom-up-Ansatz. Die Nutzung von Templatstrukturen ermöglicht Anordnungen in definierten Mustern. In einem typischen Soft-Templat werden Nanopartikel und andere oberflächenaktive Wirkstoffe in nicht-mischbare Flüssigkeiten eingebracht. Die resultierenden selbst-organisierten Dispersionen beeinflussen die Nanopartikel Interaktionen und kontrollieren die nachfolgende Selbstassemblierung. Insbesondere Interaktionen zwischen Nanopartikeln mit sehr unterschiedlicher Dispergierbarkeit und Funktionalität können Interaktionen an einer Flüssig-Flüssig Grenzfläche gerichtet werden. In diesem Forschungsprojekt wurden Wasser-in-Öl Mikroemulsionen aus quasi-ternären Mischungen mit Aerosol-OT als Tensid hergestellt. Oleyl-beschichtete superparamagnetische Eisenoxid und/oder Silber Nanopartikel wurden in der kontinuierlichen Ölphase eingebracht, während die Polyethyleneimin-stabilisierten Gold Nanopartikel in feinverteilte Wassertröpfchen inkorporiert wurden. Jede Sorte von Nanopartikeln kann den Tensidfilm und die Tröpfchen-Interaktionen auf verschiedene Weise beeinflussen, und seine Kombination führt dabei zu synergetischen Effekten. Die Anordnung von Nanopartikeln an der Grenzfläche basiert auf der Phasentrennung. Auf der einen Seite, bildeten sich aus einem zweiphasigen Winsor II System mit niedrigen Tensid Konzentrationen durch Evaporation der oberen Phase dünne Schichten aus geordneten Nanopartikeln in Form von Filament-Netzen aus. Eine detaillierte Charakterisierung zeigte, dass die Filament-artige Strukturierung auf ein kontrolliertes Nanopartikeln-Clustering und auf die Ausdehnung der Mikroemulsions-Tröpfchen zurückzuführen ist. Dieser Prozess eröffnet flexible Einsatzmöglichkeiten für unterschiedliche Nanopartikel Kompositionen, indem die Oberflächenfunktionalisierung in unterschiedlichen Lösungsmitteln erhalten bleibt, und auch für verschiedenen Lösungsmitteln und über verschiedene Flächen. Auf der anderen Seite wurde ein magnetisches Heterokoagulat in höheren Tensid Konzentration hergestellt, dessen Phasentransfer von Ölsäure in Wasser mit einem anderen zusätzlichen Tensid in einer Ethanol-Wasser Mischung ermöglicht wurde. In Abhängigkeit von der Ausgangstemperatur der initialen Komponenten konnten definierte magnetisch-stimulierbare Öl-in-Wasser Nanostrukturen erhaltet werden. Dabei gelang es Wasser-dispergierbare Nanopartikelkompartimente in eine Matrix-Hülle aus Öl-dispergierbaren Nanopartikeln einzubetten. In dieser Arbeit wurden zwei verschiedene Wege aufgezeigt, um hybride Nanostrukturen aus inversen Mikroemulsionen selbst-organisiert herzustellen. Dies belegt, dass Mikroemulsions-Template nicht nur für die Nanopartikel Synthese geeignet sind, sondern auch für die Herstellung filamentartiger, selbstorganisierter Systeme. Es eröffnen sich hiermit neue Zugänge für die selbstorganisierte Strukturierung von Nanopartikeln auf der Mikrometerskala. N2 - Los nanomateriales híbridos ofrecen la combinación de propiedades individuales de diferentes tipos de nanopartículas. Algunas estrategias para el desarrollo de nuevas nanoestructuras en mayor escala se basan en el auto-ensamblaje (self-assembly) de nanopartículas, como una estrategia “de abajo hacia arriba” (bottom-up). El uso de estructuras de plantilla (templates) proporciona ensamblajes ordenados de formas definidas. En una plantilla blanda típica, las nanopartículas y otros agentes de actividad superficial se incorporan en líquidos no miscibles. Esto da lugar a dispersiones auto-organizadas que mediarán las interacciones entre las nanopartículas, para controlar su auto-ensamblaje resultante. Especialmente las interacciones entre nanopartículas de dispersibilidad y funcionalidades muy diferentes pueden ser redirigidas a una interfase líquido-líquido. En este proyecto se formularon microemulsiones de agua-en-aceite a partir de mezclas cuasi-ternarias con Aerosol-OT (docusato de sodio) como tensioactivo. Las nanopartículas cubiertas de ligandos oleicos, de óxido de hierro superparamagnéticas o de plata, se incorporaron en la fase orgánica continua, mientras que las nanopartículas de oro estabilizadas por polietilenimina fueron confinadas en las gotículas de agua dispersas. Cada tipo de nanopartícula puede modular de fomas muy diversas la capa de tensioactivo y las interacciones entre gotículas, y además su combinación resulta en efectos sinérgicos. Los ensamblajes interfase de nanopartículas se obtuvieron bajo procesos de separación entre fases. Por un lado, a partir de un sistema bifásico de Winsor del tipo II con baja concentración del tensioactivo, la deposición y evaporación de una gota sobre una superficie (drop-casting) de la fase superior proporcionó películas finas de nanopartículas ordenadas como redes de filamentos. Su caracterización detallada probó que este ensamblaje por plantilla sobre una superficie se basa en un agrupamiento (clustering) controlado entre nanopartículas y en la elongación de las gotículas de microemulsiones. Este proceso ofrece versatilidad para usar diferentes composiciones de nanopartículas siempre que su funcionalidad en su superficie se mantenga, además de poder usar diferentes disolventes y sobre diferentes superficies. Por otro lado, un heterocoagulado magnético se formó sobre concentraciones más altas del tensioactivo, y su transferencia de fase desde ácido oleico a agua fue posible usando otro tensioactivo auxiliar en una mezcla de agua y etanol. Cuando los componentes iniciales fueron mezclados al principio bajo calentamiento, se obtuvieron nanoestucturas definidas de aceite-en-agua que responden a un imán, las cuales consisten de dominios de nanopartículas dispersibles en agua que se rodean por un embalaje (matrix-shell) de nanopartículas dispersibles en fase oleosa. De este modo, se demostraron dos propuestas para formar diversos tipos de nanoestructuras híbridas a partir de microemulsiones inversas como dispersiones auto-organizadas de unos mismos componentes. Esto demuestra que las microemulsiones constituyen estructuras de plantilla blandas no sólo para la síntesis de nanopartículas, sino también para su auto-ensamblaje, lo que sugiere novedosas estrategias para la producción de nuevos nanomateriales sofisticados en mayor escala. KW - microemulsions KW - nanoparticles KW - surfactants KW - Colloid Chemistry KW - soft-templates KW - nanostructures KW - nanoparticle assembly KW - hybrid nanostructures KW - Kolloidchemie KW - hybride Nanostrukturen KW - Mikroemulsionen KW - Nanopartikeln-Anordnung KW - Nanopartikeln KW - Nanostrukturen KW - Soft-Templaten KW - Tenside KW - Química de Coloides KW - nanoestructuras híbridas KW - microemulsiones KW - ensamblaje de nanopartículas KW - nanopartículas KW - nanoestructuras KW - estructuras templadas blandas KW - tensioactivos Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-571801 ER - TY - THES A1 - Galushchinskiy, Alexey T1 - Carbon nitride: a flexible platform for net-oxidative and net-neutral photocatalysis BT - Kohlenstoffnitrid: Eine flexible Plattform für netzoxidative und netzneutrale Photokatalyse N2 - Solar photocatalysis is the one of leading concepts of research in the current paradigm of sustainable chemical industry. For actual practical implementation of sunlight-driven catalytic processes in organic synthesis, a cheap, efficient, versatile and robust heterogeneous catalyst is necessary. Carbon nitrides are a class of organic semiconductors who are known to fulfill these requirements. First, current state of solar photocatalysis in economy, industry and lab research is overviewed, outlining EU project funding, prospective synthetic and reforming bulk processes, small scale solar organic chemistry, and existing reactor designs and prototypes, concluding feasibility of the approach. Then, the photocatalytic aerobic cleavage of oximes to corresponding aldehydes and ketones by anionic poly(heptazine imide) carbon nitride is discussed. The reaction provides a feasible method of deprotection and formation of carbonyl compounds from nitrosation products and serves as a convenient model to study chromoselectivity and photophysics of energy transfer in heterogeneous photocatalysis. Afterwards, the ability of mesoporous graphitic carbon nitride to conduct proton-coupled electron transfer was utilized for the direct oxygenation of 1,3-oxazolidin-2-ones to corresponding 1,3-oxazlidine-2,4-diones. This reaction provides an easier access to a key scaffold of diverse types of drugs and agrochemicals. Finally, a series of novel carbon nitrides based on poly(triazine imide) and poly(heptazine imide) structure was synthesized from cyanamide and potassium rhodizonate. These catalysts demonstrated a good performance in a set of photocatalytic benchmark reactions, including aerobic oxidation, dual nickel photoredox catalysis, hydrogen peroxide evolution and chromoselective transformation of organosulfur precursors. Concluding, the scope of carbon nitride utilization for net-oxidative and net-neutral photocatalytic processes was expanded, and a new tunable platform for catalyst synthesis was discovered. N2 - Die solare Photokatalyse ist eines der führenden Forschungskonzepte im aktuellen Paradigma der nachhaltigen chemischen Industrie. Für die praktische Umsetzung von sonnenlichtgetriebenen katalytischen Prozessen in der organischen Synthese ist ein billiger, effizienter, vielseitiger und robuster heterogener Katalysator erforderlich. Kohlenstoffnitride sind eine Klasse von organischen Halbleitern, von denen bekannt ist, dass sie diese Anforderungen erfüllen. Zunächst wird ein Überblick über den aktuellen Stand der solaren Photokatalyse in Wirtschaft, Industrie und Laborforschung gegeben, wobei die Finanzierung von EU-Projekten, künftige Synthese- und Reformierungsprozesse in großen Mengen, organische Solarchemie in kleinem Maßstab sowie bestehende Reaktorkonstruktionen und -prototypen beschrieben und die Durchführbarkeit des Ansatzes erläutert werden. Anschließend wird die photokatalytische aerobe Spaltung von Oximen in die entsprechenden Aldehyde und Ketone durch anionisches Poly(heptazinimid)-Kohlenstoffnitrid diskutiert. Die Reaktion stellt eine praktikable Methode zur Entschützung und Bildung von Carbonylverbindungen aus Nitrosierungsprodukten dar und dient als geeignetes Modell zur Untersuchung der Chromoselektivität und der Photophysik der Energieübertragung in der heterogenen Photokatalyse. Anschließend wurde die Fähigkeit von mesoporösem graphitischem Kohlenstoffnitrid, protonengekoppelten Elektronentransfer zu leiten, für die direkte Oxygenierung von 1,3-Oxazolidin-2-onen zu den entsprechenden 1,3-Oxazlidin-2,4-Dionen genutzt. Diese Reaktion ermöglicht einen leichteren Zugang zu einem wichtigen Gerüst für verschiedene Arten von Medikamenten und Agrochemikalien. Schließlich wurde eine Reihe neuartiger Kohlenstoffnitride auf der Basis von Poly(triazinimid)- und Poly(heptazinimid)-Strukturen aus Cyanamid und Kaliumrhodizonat synthetisiert. Diese Katalysatoren zeigten eine gute Leistung in einer Reihe von photokatalytischen Benchmark-Reaktionen, einschließlich aerober Oxidation, dualer Nickel-Photoredox-Katalyse, Wasserstoffperoxid-Evolution und chromoselektiver Umwandlung von Organoschwefel-Vorläufern. Abschließend wurde der Anwendungsbereich von Kohlenstoffnitrid für netzoxidative und netzneutrale photokatalytische Prozesse erweitert und eine neue abstimmbare Plattform für die Katalysatorsynthese entdeckt. KW - carbon nitrides KW - Kohlenstoffnitriden KW - heterogeneous photocatalysis KW - heterogene Photokatalyse KW - organic synthesis KW - organische Synthese Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-610923 ER - TY - THES A1 - Baryzewska, Agata W. T1 - Reconfigurable Janus emulsions as signal transducers for biosensing applications Y1 - 2023 ER - TY - THES A1 - Xie, Dongjiu T1 - Nanostructured Iron-based compounds as sulfur host material for lithium-sulfur batteries T1 - Nanostrukturierte Eisenverbindungen als Schwefel-Wirtsmaterial für Lithium-Schwefel-Batterien N2 - The present thesis focuses on the synthesis of nanostructured iron-based compounds by using β-FeOOH nanospindles and poly(ionic liquid)s (PILs) vesicles as hard and soft templates, respectively, to suppress the shuttle effect of lithium polysulfides (LiPSs) in Li-S batteries. Three types of composites with different nanostructures (mesoporous nanospindle, yolk-shell nanospindle, and nanocapsule) have been synthesized and applied as sulfur host material for Li-S batteries. Their interactions with LiPSs and effects on the electrochemical performance of Li-S batteries have been systematically studied. In the first part of the thesis, carbon-coated mesoporous Fe3O4 (C@M-Fe3O4) nanospindles have been synthesized to suppress the shuttle effect of LiPSs. First, β-FeOOH nanospindles have been synthesized via the hydrolysis of iron (III) chloride in aqueous solution and after silica coating and subsequent calcination, mesoporous Fe2O3 (M-Fe2O3) have been obtained inside the confined silica layer through pyrolysis of β-FeOOH. After the removal of the silica layer, electron tomography (ET) has been applied to rebuild the 3D structure of the M-Fe2O3 nanospindles. After coating a thin layer of polydopamine (PDA) as carbon source, the PDA-coated M-Fe2O3 particles have been calcinated to synthesize C@M-Fe3O4 nanospindles. With the chemisorption of Fe3O4 and confinement of mesoporous structure to anchor LiPSs, the composite C@M-Fe3O4/S electrode delivers a remaining capacity of 507.7 mAh g-1 at 1 C after 600 cycles. In the second part of the thesis, a series of iron-based compounds (Fe3O4, FeS2, and FeS) with the same yolk-shell nanospindle morphology have been synthesized, which allows for the direct comparison of the effects of compositions on the electrochemical performance of Li-S batteries. The Fe3O4-carbon yolk-shell nanospindles have been synthesized by using the β-FeOOH nanospindles as hard template. Afterwards, Fe3O4-carbon yolk-shell nanospindles have been used as precursors to obtain iron sulfides (FeS and FeS2)-carbon yolk-shell nanospindles through sulfidation at different temperatures. Using the three types of yolk-shell nanospindles as sulfur host, the effects of compositions on interactions with LiPSs and electrochemical performance in Li-S batteries have been systematically investigated and compared. Benefiting from the chemisorption and catalytic effect of FeS2 particles and the physical confinement of the carbon shell, the FeS2-C/S electrode exhibits the best electrochemical performance with an initial specific discharge capacity of 877.6 mAh g-1 at 0.5 C and a retention ratio of 86.7% after 350 cycles. In the third part, PILs vesicles have been used as soft template to synthesize carbon nanocapsules embedded with iron nitride particles to immobilize and catalyze LiPSs in Li-S batteries. First, 3-n-decyl-1-vinylimidazolium bromide has been used as monomer to synthesize PILs nanovesicles by free radical polymerization. Assisted by PDA coating route and ion exchange, PIL nanovesicles have been successfully applied as soft template in morphology-maintaining carbonization to prepare carbon nanocapsules embedded with iron nitride nanoparticles (FexN@C). The well-dispersed iron nitride nanoparticles effectively catalyze the conversion of LiPSs to Li2S, owing to their high electrical conductivity and strong chemical binding to LiPSs. The constructed FexN@C/S cathode demonstrates a high initial discharge capacity of 1085.0 mAh g-1 at 0.5 C with a remaining value of 930.0 mAh g-1 after 200 cycles. The results in the present thesis demonstrate the facile synthetic routes of nanostructured iron-based compounds with controllable morphologies and compositions using soft and hard colloidal templates, which can be applied as sulfur host to suppress the shuttle behavior of LiPSs. The synthesis approaches developed in this thesis are also applicable to fabricating other transition metal-based compounds with porous nanostructures for other applications. N2 - Die vorliegende Arbeit beschreibt die Synthese von nanostrukturierten Verbindungen auf Eisenbasis unter Verwendung von β-FeOOH-Nanospindeln und Vesikeln aus Poly(ionischen Flüssigkeiten) (PILs) als harte bzw. weiche Vorlagen, um den Shuttle-Effekt von Lithiumpolysulfiden (LiPSs) in Li-S-Batterien zu unterdrücken. Drei Arten von Verbundstoffen mit unterschiedlichen Nanostrukturen (mesoporöse Nanospindel, Dotterschalen-Nanospindel und Nanokapsel) wurden synthetisiert und als Schwefel-Wirtsmaterial für Li-S-Batterien eingesetzt. Ihre Wechselwirkungen mit LiPS und ihre Auswirkungen auf die elektrochemische Leistung von Li-S-Batterien wurden systematisch untersucht. Im ersten Teil der Arbeit wurden kohlenstoffbeschichtete mesoporöse Fe3O4 (C@M-Fe3O4) Nanospindeln synthetisiert, um den Shuttle-Effekt von LiPSs zu unterdrücken. Zunächst wurden β-FeOOH-Nanospindeln durch Hydrolyse von Eisen(III)-chlorid in wässriger Lösung synthetisiert. Nach der Beschichtung mit Siliziumdioxid und anschließender Kalzinierung wurde mesoporöses Fe2O3 (M-Fe2O3) innerhalb der begrenzten Siliziumdioxidschicht durch Pyrolyse von β-FeOOH erhalten. Nach der Entfernung der Siliziumdioxidschicht wurde Elektronentomographie (ET) eingesetzt, um die 3D-Struktur der M-Fe2O3-Nanospindeln zu rekonstruieren. Nach der Beschichtung mit einer dünnen Schicht Polydopamin (PDA) als Kohlenstoffquelle wurden die PDA-beschichteten M-Fe2O3-Partikel kalziniert, um C@M-Fe3O4-Nanospindeln zu synthetisieren. Durch die Chemisorption von Fe3O4 und die Einschließung der mesoporösen Struktur zur Verankerung der LiPSs liefert die zusammengesetzte C@M-Fe3O4/S-Elektrode nach 600 Zyklen eine Restkapazität von 507,7 mAh g-1 bei 1 C. Im zweiten Teil der Arbeit wurde eine Reihe von eisenbasierten Verbindungen (Fe3O4, FeS2, und FeS) mit der gleichen Dotterschalen-Nanospindel-Morphologie synthetisiert, was einen direkten Vergleich der Auswirkungen der Zusammensetzungen auf die elektrochemische Leistung von Li S-Batterien ermöglicht. Die Fe3O4-Kohlenstoff-Dotterschalen-Nanospindeln wurden unter Verwendung der β-FeOOH-Nanospindeln als harte Vorlage synthetisiert. Anschließend wurden Fe3O4-Kohlenstoff-Dotterschalen-Nanospindeln als Vorläufer verwendet, um Eisensulfide (FeS und FeS2) - Kohlenstoff-Dotterschalen-Nanospindeln durch Sulfidierung bei verschiedenen Temperaturen zu erhalten. Durch Verwendung der drei Arten von Dotterschalen-Nanospindeln als Schwefelwirt wurden die Auswirkungen der Zusammensetzungen auf die Wechselwirkungen mit LiPS und die elektrochemische Leistung in Li-S-Batterien systematisch untersucht und verglichen. Die FeS2-C/S-Elektrode, die von der Chemisorption und der katalytischen Wirkung der FeS2-Teilchen und dem physikalischen Einschluss der Kohlenstoffschale profitiert, zeigt die beste elektrochemische Leistung mit einer anfänglichen spezifischen Entladekapazität von 877,6 mAh g-1 bei 0,5 C und einem Kapazitätserhalt von 86,7 % nach 350 Zyklen. Im dritten Teil wurden PILs-Vesikel als weiche Vorlage verwendet, um Kohlenstoff-Nanokapseln zu synthetisieren, die mit Eisennitridpartikeln durchsetzt sind, um LiPSs in Li-S-Batterien zu immobilisieren und deren Umwandlung zu katalysieren. Zunächst wurde 3-n-Decyl-1-Vinylimidazoliumbromid als Monomer für die Synthese von PIL-Nanovesikeln durch radikalische Polymerisation verwendet. Mit Hilfe der PDA-Beschichtung und des Ionenaustauschs wurden die PIL-Nanomoleküle erfolgreich als weiche Vorlage bei der morphologieerhaltenden Karbonisierung eingesetzt, um Kohlenstoff-Nanokapseln mit eingebetteten Eisennitrid-Nanopartikeln (FexN@C) herzustellen. Die gut dispergierten Eisennitrid-Nanopartikel katalysieren die Umwandlung von LiPS in Li2S aufgrund ihrer hohen elektrischen Leitfähigkeit und starken chemischen Bindung an LiPS effektiv. Die konstruierte FexN@C/S-Kathode zeigt eine hohe anfängliche Entladekapazität von 1085,0 mAh g-1 bei 0,5 C mit einer verbleibenden Kapazität von 930,0 mAh g-1 nach 200 Zyklen. Die Ergebnisse dieser Arbeit zeigen, dass sich nanostrukturierte eisenbasierte Verbindungen mit kontrollierbarer Morphologie und Zusammensetzung leicht synthetisieren lassen, indem weiche und harte kolloidale Template verwendet werden, die als Schwefelwirt eingesetzt werden können, um das Shuttle-Verhalten von LiPS zu unterdrücken. Die in dieser Arbeit entwickelten Syntheseansätze sind auch für die Herstellung anderer Verbindungen auf Übergangsmetallbasis mit porösen Nanostrukturen für andere Anwendungen einsetzbar. KW - sulfur host KW - Schwefelwirt KW - Li-S batteries KW - Li-S-Batterien KW - iron-based compounds KW - Verbindungen auf Eisenbasis KW - nanospindles KW - Nanospindeln KW - vesicles KW - Vesikel KW - nanocapsules KW - Nanokapseln KW - poly(ionic liquid)s KW - poly(ionische Flüssigkeiten) KW - electron tomography KW - Elektronentomographie KW - cryo-electron microscopy KW - Kryo-Elektronenmikroskopie Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-610369 ER - TY - THES A1 - Lian, Tingting T1 - Efficient activation of peroxymonosulfate by carbon-based catalysts for water purification N2 - The increasing global population has led to a growing demand for cost-effective and eco-friendly methods of water purification. This demand has reached a peak due to the increasing presence of impurities and pollutants in water and a growing awareness of waterborne diseases. Advanced oxidation processes (AOPs) are effective methods to address these challenges, due to the generation of highly reactive radicals, such as sulfate radical (SO4•-), hydroxyl radical (•OH), and/or superoxide radical (•O2-) in oxidation reactions. Relative to conventional hydrogen peroxide (H2O2)-based AOPs for wastewater treatment, the persulfate-related AOPs are receiving increasing attention over the past decades, due to their stronger oxidizing capability and a wider pH working window. Further deployment of the seemingly plausible technology as an alternative for the well-established one in industry, however, necessitates a careful evaluation of compounding factors, such as water matrix effects, toxicological consequences, costs, and engineering challenges, etc. To this end, rational design of efficient and environmentally friendly catalysts constitutes an indispensable pathway to advance persulfate activation efficacy and to elucidate the mechanisms in AOPs, the combined endeavors are expected to provide insightful understanding and guidelines for future studies in wastewater treatment. A dozens of transition metal-based catalysts have been developed for persulfate-related AOPs, while the undesirable metal leaching and poor stability in acidic conditions have been identified as major obstacles. Comparatively, the carbonaceous materials are emerging as alternative candidates, which are characterized by metal-free nature, wide availability, and exceptional resistance to acid and alkali, as well as tunable physicochemical and electronic properties, the combined merits make them an attractive option to overcome the aforementioned limitations in metal-based catalytic systems. This dissertation aims at developing novel carbonaceous materials to boost the activity in peroxymonosulfate (PMS) activation processes. Functionalized carbon materials with metal particles or heteroatoms were constructed and further evaluated in terms of their ability to activate PMS for AOPs. The main contents of this thesis are summarized as follows: (1) Iron oxide-loaded biochar: improving stability and alleviating metal leakage Metal leaching constitutes one of the main drawbacks in using transition metals as PMS activators, which is accompanied by the generation of metal-containing sludge, potentially leading to secondary pollution. Meanwhile, the metal nanoparticles are prone to aggregate, causing rapid decay of catalytic performance. The use of carbons as supports for transition metals could mitigate these deficiencies, because the interaction between metals and carbons could in turn disperse and stabilize metal nanoparticles, thus suppressing the metal leaching. In this work, the environmentally benign lignin with its abundant phenolic groups, which is well known to serve as carbon source with high yields and flexibility, was utilized to load Fe ions. The facile low-temperature pre-treatment pyrolytic strategy was employed to construct a green catalyst with iron oxides embedded in Kraft-lignin-derived biochar (termed as γ-Fe2O3@KC). The γ-Fe2O3@KC was capable of activating PMS to generate stable non-radical species (1O2 and Fe (V)=O) and to enhance electron transfer efficiency. A surface-bound reactive complex (catalyst-PMS*) was identified by electrochemical characterizations and discussed with primary surface-bound radical pairs to explain the contradictions between quenching and EPR detection results. The system also showed encouraging reusability for at least 5 times and high stability at pH 3-9. The low concentration of iron in γ-Fe2O3@KC/PMS system implied that the carbon scaffold of biochar substantially alleviated metal leakage. (2) MOF-derived nanocarbon: new carbon crystals Traditional carbon materials are of rather moderate performance in activation PMS, due to the poor electron transfer capacity within the amorphous structure and limited active sites for PMS adsorption. Herein, we established crystalline nanocarbon materials via a simple NaCl-templated strategy using the monoclinic zeolitic imidazolate framework-8 (ZIF-8) sealed with NaCl crystals as the precursors. Specifically, NaCl captured dual advantages in serving as structure-directing agent during hydrolysis and protective salt reactor to facilitate phase transformation during carbonization. The structure-directing agent NaCl provided a protective and confined space for the evolution of MOF upon carbonization, which led to high doping amounts of nitrogen (N) and oxygen elements (O) in carbon framework (N: 14.16 wt%, O: 9.6 wt%) after calcination at a high temperature of 950 oC. We found that N-O co-doping can activate the chemically inert carbon network and the nearby sp2-hybridized carbon atoms served as active sites for adsorption and activation. Besides, the highly crystallized structure with well-established carbon channels around activated carbon atoms could significantly accelerate electron transfer process after initial adsorption of PMS. As such, this crystalline nanocarbon exhibited excellent catalytic kinetics for various pollutants. (3) MOF-derived 2D carbon layers: enhanced mass/electron transfer The two-dimensional (2D) configuration of carbon-based nanosheets with inherent nanochannels and abundant active sites residing on the layer edges or in between the layers, allowed the accessible interaction and close contact between the substrates and reactants, as well as the dramatically improved electron- and mass-transfer kinetics. In this regard, we developed dual-templating strategy to afford 2D assembly of the crystalline carbons, which found efficiency in reinforcing the interactions between the catalyst surface and foreign pollutants. Specifically, we found that the ice crystals and NaCl promoted the evolution of MOF in a 2D fashion during the freezing casting stage, while the later further allowed the formation of a graphitic surface at high calcination temperature, by virtue of the templating effect of molten salt. Due to the highly retained co-doping amounts, N and O heteroatoms created abundant active sites for PMS activation, the 2D configuration of carbon-based nanosheets enable efficient interaction of PMS and pollutants on the surface, which further boosted the kinetics of degradation. KW - Carbon KW - Water treatment KW - PMS activation Y1 - 2023 ER - TY - GEN A1 - Bhattacharyya, Biswajit A1 - Balischewski, Christian A1 - Sperlich, Eric A1 - Günter, Christina A1 - Mies, Stefan A1 - Kelling, Alexandra A1 - Taubert, Andreas T1 - N-Butyl Pyridinium Diiodido Argentate(I) BT - A One-Dimensional Ag-I Network with Superior Solid-State Ionic Conductivity at Room Temperature T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - A new solid-state material, N-butyl pyridinium diiodido argentate(I), is synthesized using a simple and effective one-pot approach. In the solid state, the compound exhibits 1D ([AgI2](-))(n) chains that are stabilized by the N-butyl pyridinium cation. The 1D structure is further manifested by the formation of long, needle-like crystals, as revealed from electron microscopy. As the general composition is derived from metal halide-based ionic liquids, the compound has a low melting point of 100-101 degrees C, as confirmed by differential scanning calorimetry. Most importantly, the compound has a conductivity of 10(-6) S cm(-1) at room temperature. At higher temperatures the conductivity increases and reaches to 10(-4 )S cm(-1) at 70 degrees C. In contrast to AgI, however, the current material has a highly anisotropic 1D arrangement of the ionic domains. This provides direct and tuneable access to fast and anisotropic ionic conduction. The material is thus a significant step forward beyond current ion conductors and a highly promising prototype for the rational design of highly conductive ionic solid-state conductors for battery or solar cell applications. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1341 KW - AgI KW - ionic conductivity KW - Ionic liquids KW - thermal properties Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-604874 SN - 1866-8372 IS - 1341 ER - TY - JOUR A1 - Bhattacharyya, Biswajit A1 - Balischewski, Christian A1 - Sperlich, Eric A1 - Günter, Christina A1 - Mies, Stefan A1 - Kelling, Alexandra A1 - Taubert, Andreas T1 - N-Butyl Pyridinium Diiodido Argentate(I) BT - A One-Dimensional Ag-I Network with Superior Solid-State Ionic Conductivity at Room Temperature JF - Advanced materials interfaces N2 - A new solid-state material, N-butyl pyridinium diiodido argentate(I), is synthesized using a simple and effective one-pot approach. In the solid state, the compound exhibits 1D ([AgI2](-))(n) chains that are stabilized by the N-butyl pyridinium cation. The 1D structure is further manifested by the formation of long, needle-like crystals, as revealed from electron microscopy. As the general composition is derived from metal halide-based ionic liquids, the compound has a low melting point of 100-101 degrees C, as confirmed by differential scanning calorimetry. Most importantly, the compound has a conductivity of 10(-6) S cm(-1) at room temperature. At higher temperatures the conductivity increases and reaches to 10(-4 )S cm(-1) at 70 degrees C. In contrast to AgI, however, the current material has a highly anisotropic 1D arrangement of the ionic domains. This provides direct and tuneable access to fast and anisotropic ionic conduction. The material is thus a significant step forward beyond current ion conductors and a highly promising prototype for the rational design of highly conductive ionic solid-state conductors for battery or solar cell applications. KW - AgI KW - ionic conductivity KW - Ionic liquids KW - thermal properties Y1 - 2023 U6 - https://doi.org/10.1002/admi.202202363 SN - 2196-7350 VL - 10 IS - 12 PB - Wiley CY - Hoboken ER -