TY - JOUR A1 - Heck, Christian A1 - Prinz, Julia A1 - Dathe, Andre A1 - Merk, Virginia A1 - Stranik, Ondrej A1 - Fritzsche, Wolfgang A1 - Kneipp, Janina A1 - Bald, Ilko T1 - Gold Nanolenses Self-Assembled by DNA Origami JF - ACS Photonics N2 - Nanolenses are self-similar chains of metal nanoparticles, which can theoretically provide extremely high field enhancements. Yet, the complex structure renders their synthesis challenging and has hampered closer analyses so far. Here, DNA origami is used to self-assemble 10, 20, and 60 nm gold nanoparticles as plasmonic gold nanolenses (AuNLs) in solution and in billions of copies. Three different geometrical arrangements are assembled, and for each of the three designs, surface-enhanced Raman scattering (SERS) capabilities of single AuNLs are assessed. For the design which shows the best properties, SERS signals from the two different internal gaps are compared by selectively placing probe dyes. The highest Raman enhancement is found for the gap between the small and medium nanoparticle, which is indicative of a cascaded field enhancement. KW - plasmonics KW - DNA origami KW - SERS KW - nanolenses KW - gold nanoparticles Y1 - 2017 U6 - https://doi.org/10.1021/acsphotonics.6b00946 SN - 2330-4022 VL - 4 SP - 1123 EP - 1130 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Olejko, Lydia A1 - Bald, Ilko T1 - FRET efficiency and antenna effect in multi-color DNA origami-based light harvesting systems JF - RSC Advances N2 - Artificial light harvesting complexes find applications in artificial photosynthesis, photovoltaics and light harvesting chemical sensors. They are used to enhance the absorption of light of a reaction center which is often represented by a single acceptor. Here, we present different light harvesting systems on DNA origami structures and analyze systematically the light harvesting efficiency. By changing the number and arrangement of different fluorophores (FAM as donor, Cy3 as transmitter and Cy5 as acceptor molecules) the light harvesting efficiency is optimized to create a broadband absorption and to improve the antenna effect 1 (including two energy transfer steps) from 0.02 to 1.58, and the antenna effect 2 (including a single energy transfer step) from 0.04 to 8.7, i.e. the fluorescence emission of the acceptor is significantly higher when the light-harvesting antenna is excited at lower wavelength compared to direct excitation of the acceptor. The channeling of photo energy to the acceptor proceeds by Forster Resonance Energy Transfer (FRET) and we carefully analyze also the FRET efficiency of the different light harvesting systems. Accordingly, the antenna effect can be tuned by modifying the stoichiometry of donor, transmitter and acceptor dyes, whereas the FRET efficiency is mainly governed by the spectroscopic properties of dyes and their distances. Y1 - 2017 U6 - https://doi.org/10.1039/c7ra02114c SN - 2046-2069 VL - 7 IS - 39 SP - 23924 EP - 23934 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Rackwitz, Jenny A1 - Ranković, Miloš Lj. A1 - Milosavljević, Aleksandar R. A1 - Bald, Ilko T1 - A novel setup for the determination of absolute cross sections for low-energy electron induced strand breaks in oligonucleotides BT - the effect of the radiosensitizer 5-fluorouracil* JF - The European physical journal : D, Atomic, molecular, optical and plasma physics N2 - Low-energy electrons (LEEs) play an important role in DNA radiation damage. Here we present a method to quantify LEE induced strand breakage in well-defined oligonucleotide single strands in terms of absolute cross sections. An LEE irradiation setup covering electron energies <500 eV is constructed and optimized to irradiate DNA origami triangles carrying well-defined oligonucleotide target strands. Measurements are presented for 10.0 and 5.5 eV for different oligonucleotide targets. The determination of absolute strand break cross sections is performed by atomic force microscopy analysis. An accurate fluence determination ensures small margins of error of the determined absolute single strand break cross sections sigma SSB. In this way, the influence of sequence modification with the radiosensitive 5-Fluorouracil (U-5F) is studied using an absolute and relative data analysis. We demonstrate an increase in the strand break yields of U-5F containing oligonucleotides by a factor of 1.5 to 1.6 compared with non-modified oligonucleotide sequences when irradiated with 10 eV electrons. Y1 - 2017 U6 - https://doi.org/10.1140/epjd/e2016-70608-4 SN - 1434-6060 SN - 1434-6079 VL - 71 PB - Springer CY - New York ER - TY - JOUR A1 - Schuermann, Robin A1 - Tanzer, Katrin A1 - Dabkowska, Iwona A1 - Denifl, Stephan A1 - Bald, Ilko T1 - Stability of the Parent Anion of the Potential Radiosensitizer 8-Bromoadenine Formed by Low-Energy (< 3 eV) Electron Attachment JF - The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces & biophysical chemistry N2 - 8-Bromoadenine ((8Br)A) is a potential DNA radiosensitizer for cancer radiation therapy due to its efficient interaction with low-energy electrons (LEEs). LEEs are a short-living species generated during the radiation damage of DNA by high-energy radiation as it is applied in cancer radiation therapy. Electron attachment to (8Br)A in the gas phase results in a stable parent anion below 3 eV electron energy in addition to fragmentation products formed by resonant exocyclic bond cleavages. Density functional theory (DFT) calculations of the (8Br)A(-) anion reveal an exotic bond between the bromine and the C8 atom with a bond length of 2.6 angstrom, where the majority of the charge is located on bromine and the spin is mainly located on the C8 atom. The detailed understanding of such long-lived anionic states of nucleobase analogues supports the rational development of new therapeutic agents, in which the enhancement of dissociative electron transfer to the DNA backbone is critical to induce DNA strand breaks in cancerous tissue. Y1 - 2017 U6 - https://doi.org/10.1021/acs.jpcb.7b02130 SN - 1520-6106 VL - 121 SP - 5730 EP - 5734 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Schürmann, Robin Mathis A1 - Bald, Ilko T1 - Effect of adsorption kinetics on dissociation of DNA-nucleobases on gold nanoparticles under pulsed laser illumination JF - Physical chemistry, chemical physics : a journal of European Chemical Societies N2 - Photothermal therapy is a novel approach to destroy cancer cells by an increase of temperature due to laser illumination of gold nanoparticles (GNPs) that are incorporated into the cells. Here, we study the decomposition of DNA nucleobases via irradiation of gold nanoparticles with ns-laser pulses. The kinetics of the adsorption and decomposition process is described by a theoretical model based on the Langmuir assumptions and correlated with experimentally determined reaction rates revealing a strong influence of the nucleobase specific adsorption. Beside the four nucleobases, their brominated analogs, which are potential radiosensitizers in cancer therapy, are also investigated and show a significant modification of the decomposition rates. The fastest decomposition rates are observed for adenine, 8-bromoadenine, 8-bromoguanine and 5-bromocytosine. These results are in good agreement with the relative adsorption rates that are determined from the aggregation kinetics of the GNPs taking the effect of an inhomogeneous surface into account. For adenine and its brominated analog, the decomposition products are further analyzed by surface enhanced Raman scattering (SERS) indicating a strong fragmentation of the molecules into their smallest subunits. Y1 - 2017 U6 - https://doi.org/10.1039/c6cp08433h SN - 1463-9076 SN - 1463-9084 VL - 19 SP - 10796 EP - 10803 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Schürmann, Robin Mathis A1 - Bald, Ilko T1 - Real-time monitoring of plasmon induced dissociative electron transfer to the potential DNA radiosensitizer 8-bromoadenine JF - Nanoscale N2 - The excitation of localized surface plasmons in noble metal nanoparticles (NPs) results in different nanoscale effects such as electric field enhancement, the generation of hot electrons and a temperature increase close to the NP surface. These effects are typically exploited in diverse fields such as surface-enhanced Raman scattering (SERS), NP catalysis and photothermal therapy (PTT). Halogenated nucleobases are applied as radiosensitizers in conventional radiation cancer therapy due to their high reactivity towards secondary electrons. Here, we use SERS to study the transformation of 8-bromoadenine ((8Br)A) into adenine on the surface of Au and AgNPs upon irradiation with a low-power continuous wave laser at 532, 633 and 785 nm, respectively. The dissociation of (8Br)A is ascribed to a hot-electron transfer reaction and the underlying kinetics are carefully explored. The reaction proceeds within seconds or even milliseconds. Similar dissociation reactions might also occur with other electrophilic molecules, which must be considered in the interpretation of respective SERS spectra. Furthermore, we suggest that hot-electron transfer induced dissociation of radiosensitizers such as (8Br)A can be applied in the future in PTT to enhance the damage of tumor tissue upon irradiation. Y1 - 2017 U6 - https://doi.org/10.1039/c6nr08695k SN - 2040-3364 SN - 2040-3372 VL - 9 SP - 1951 EP - 1955 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Schürmann, Robin Mathis A1 - Tsering, Thupten A1 - Tanzer, Katrin A1 - Denifl, Stephan A1 - Kumar, S. V. K. A1 - Bald, Ilko T1 - Resonant Formation of Strand Breaks in Sensitized Oligonucleotides Induced by Low-Energy Electrons (0.5-9 eV) JF - Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition N2 - Halogenated nucleobases are used as radiosensitizers in cancer radiation therapy, enhancing the reactivity of DNA to secondary low-energy electrons (LEEs). LEEs induce DNA strand breaks at specific energies (resonances) by dissociative electron attachment (DEA). Although halogenated nucleobases show intense DEA resonances at various electron energies in the gas phase, it is inherently difficult to investigate the influence of halogenated nucleobases on the actual DNA strand breakage over the broad range of electron energies at which DEA can take place (<12 eV). By using DNA origami nanostructures, we determined the energy dependence of the strand break cross-section for oligonucleotides modified with 8-bromoadenine ((8Br)A). These results were evaluated against DEA measurements with isolated (8Br)A in the gas phase. Contrary to expectations, the major contribution to strand breaks is from resonances at around 7 eV while resonances at very low energy (<2 eV) have little influence on strand breaks. KW - cancer radiation therapy KW - dissociative electron attachment KW - DNA origami KW - DNA radiation damage KW - radiosensitizers Y1 - 2017 U6 - https://doi.org/10.1002/anie.201705504 SN - 1433-7851 SN - 1521-3773 VL - 56 SP - 10952 EP - 10955 PB - Wiley-VCH CY - Weinheim ER -