TY - JOUR A1 - Bressel, Katharina A1 - Prevost, Sylvain A1 - Appavou, Marie-Sousai A1 - Tiersch, Brigitte A1 - Koetz, Joachim A1 - Gradzielski, Michael T1 - Phase behaviour and structure of zwitanionic mixtures of perfluorocarboxylates and tetradecyldimethylamine oxide-dependence on chain length of the perfluoro surfactant JF - Soft matter N2 - Phase behaviour and the mesoscopic structure of zwitanionic surfactant mixtures based on the zwitterionic tetradecyldimethylamine oxide (TDMAO) and anionic lithium perfluoroalkyl carboxylates have been investigated for various chain lengths of the perfluoro surfactant with an emphasis on spontaneously forming vesicles. These mixtures were studied at a constant total concentration of 50 mM and characterised by means of dynamic light scattering (DLS), electric conductivity, small-angle neutron scattering (SANS), viscosity, and cryo-scanning electron microscopy (Cryo-SEM). No vesicles are formed for relatively short perfluoro surfactants. The extension of the vesicle phase becomes substantially larger with increasing chain length of the perfluoro surfactant, while at the same time the size of these vesicles increases. Head group interactions in these systems play a central role in the ability to form vesicles, as already protonating 10 mol% of the TDMAO largely enhances the propensity for vesicle formation. The range of vesicle formation in the phase diagram is not only substantially enlarged but also extends to shorter perfluoro surfactants, where without protonation no vesicles would be formed. The size and polydispersity of the vesicles are related to the chain length of the perfluoro surfactant, the vesicles becoming smaller and more monodisperse with increasing perfluoro surfactant chain length. The ability of the mixed systems to form well-defined unilamellar vesicles accordingly can be controlled by the length of the alkyl chain of the perfluorinated surfactant and depends strongly on the charge conditions, which can be tuned easily by pH-variation. Y1 - 2011 U6 - https://doi.org/10.1039/c1sm05618b SN - 1744-683X VL - 7 IS - 23 SP - 11232 EP - 11242 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Koeth, Anja A1 - Appelhans, Dietmar A1 - Robertson, Daniela A1 - Tiersch, Brigitte A1 - Koetz, Joachim T1 - Use of weakly cationic dendritic glycopolymer for morphological transformation of phospholipid vesicles into tube-like networks JF - Soft matter N2 - Using cationic polyelectrolytes with different molecular architectures, only hyperbranched poly(ethyleneimine) with maltose shell is suited to tailor the morphological transformation of anionic vesicles into tube-like networks. The interaction features of those materials partly mimic biological features of tubular proteins in nature. Y1 - 2011 U6 - https://doi.org/10.1039/c1sm06439h SN - 1744-683X VL - 7 IS - 22 SP - 10581 EP - 10584 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Fechner, Mabya A1 - Koetz, Joachim T1 - Polyampholyte-Surfactant film tuning in reverse microemulsions JF - Langmuir N2 - The pH-dependent influence of two different strongly alternating copolymers [poly(N,N'-diallyl-N,N'-dimethylammonium-alt-N-phenylmaleamic carboxylate) (PalPh) and poly(N,N'-diallyl-N,a-dimethylammonium-alt-3,5-bis(carboxyphenyl) maleamic carboxylate) (PalPhBisCarb)] based on N,N'-diallyl-N, -dimethylarnmonium chloride and maleamic acid derivatives on the phase behavior of a water-in-oil (w/o) microemulsion system made from toluene pentanol (1:1) and sodium dodecyl sulfate was investigated. It was shown that the optically dear phase range can be extended after incorporation of these copolymers, leading to an increased water solubilization capacity. Additionally, the required amount of surfactant to establish a clear w/o microemulsion depends on the pH value, which means the hydrophobicity of the copolymers. Conductivity measurements show that droplet droplet interactions in the w/o microemulsion are decreased at acidic but increased at alkaline pH in the presence of the copolymers. From differenctial scanning calorimetry measurements one can further conclude that these results are in agreement with a change of the position of the copolymer in the interfacial region of the surfactant film. The more hydrophobic PalPh can be directly incorporated into the surfactant film, whereas the phenyl groups of PalPhBisCarb flip into the water core by increasing the pH value. Y1 - 2011 U6 - https://doi.org/10.1021/la200791k SN - 0743-7463 VL - 27 IS - 9 SP - 5316 EP - 5323 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Poghosyan, Armen H. A1 - Arsenyan, Levon H. A1 - Gharabekyan, Hrant H. A1 - Falkenhagen, Sandra A1 - Koetz, Joachim A1 - Shahinyan, Aram A. T1 - Molecular dynamics simulations of inverse sodium dodecyl sulfate (SDS) micelles in a mixed toluene/pentanol solvent in the absence and presence of poly(diallyldimethylammonium chloride) (PDADMAC) JF - Journal of colloid and interface science N2 - We have performed a 15 ns molecular dynamics simulation of inverse sodium dodecyl sulfate (SDS) micelles in a mixed toluene/pentanol solvent in the absence and presence of a cationic polyelectrolyte, i.e. poly(diallyldimethylammonium chloride) (PDADMAC). The NAMD code and CHARMM force field were used. During the simulation time, the radii of SOS inverse micelles changed and the radii of the water droplets have been calculated. The behavior of SDS hydrocarbon chains has been characterized by calculating the orientation order parameter and the chain average length. The water droplet properties (water flow, water molecules displacement) have been examined. In summary the MD simulations indicate a more rigid and ordered surfactant film due to the formation of a polyelectrolyte palisade layer in full agreement with the experimental findings, e.g. the viscosity increase and shift of the percolation boundary. KW - Surfactant micelles KW - Molecular dynamics simulations KW - SDS Y1 - 2011 U6 - https://doi.org/10.1016/j.jcis.2011.01.091 SN - 0021-9797 VL - 358 IS - 1 SP - 175 EP - 181 PB - Elsevier CY - San Diego ER - TY - JOUR A1 - Wellert, Stefan A1 - Tiersch, Brigitte A1 - Koetz, Joachim A1 - Richardt, Andre A1 - Lapp, Alain A1 - Holderer, Olaf A1 - Gaeb, Juergen A1 - Blum, Marc-Michael A1 - Schulreich, Christoph A1 - Stehle, Ralf A1 - Hellweg, Thomas T1 - The DFPase from Loligo vulgaris in sugar surfactant-based bicontinuous microemulsions structure, dynamics, and enzyme activity JF - European biophysics journal : with biophysics letters ; an international journal of biophysics N2 - The enzyme diisopropyl fluorophosphatase (DFPase) from the squid Loligo vulgaris is of great interest because of its ability to catalyze the hydrolysis of highly toxic organophosphates. In this work, the enzyme structure in solution (native state) was studied by use of different scattering methods. The results are compared with those from hydrodynamic model calculations based on the DFPase crystal structure. Bicontinuous microemulsions made of sugar surfactants are discussed as host systems for the DFPase. The microemulsion remains stable in the presence of the enzyme, which is shown by means of scattering experiments. Moreover, activity assays reveal that the DFPase still has high activity in this complex reaction medium. To complement the scattering experiments cryo-SEM was also employed to study the microemulsion structure. KW - Dynamic light scattering KW - Neutron spin echo KW - Microemulsion KW - Enzyme catalysis KW - SANS KW - Protein structure Y1 - 2011 U6 - https://doi.org/10.1007/s00249-011-0689-0 SN - 0175-7571 VL - 40 IS - 6 SP - 761 EP - 774 PB - Springer CY - New York ER - TY - JOUR A1 - Fechner, Mabya A1 - Koetz, Joachim T1 - Potentiometric behavior of Polyampholytes based on N,N'-diallyl-N,N'-dimethylammonium chloride and maleamic acid derivatives JF - Macromolecular chemistry and physics N2 - Strongly alternating copolymers (PalH, PalPh, PalPhBisCarb) composed of N,N'-diallyl-N,N'-dimethyl-ammonium chloride (DADMAC) and maleamic acid derivatives (MAD) are synthesized by a water-based free radical copolymerization using 4,4-azobis(4-cyanovaleric acid) (V501) as the initiator. The structure of the copolymers is verified by 1H-NMR, elemental analysis, and thermogravimetric measurements, and the physicochemical properties are investigated by viscometric and potentiometric techniques. Potentiometric titration curves show that the acidity of the carboxylic groups strongly depends on the degree of dissociation and the ionic strength. Since all copolymers behave as polycations at low degree of dissociation, a transition from an extended chain to a coil conformation can be identified by reaching the isoelectric point (IEP). KW - acidity constants KW - radical polymerization KW - polyampholytes KW - viscosity KW - conformational transitions Y1 - 2011 U6 - https://doi.org/10.1002/macp.201100532 SN - 1022-1352 VL - 212 IS - 24 SP - 2691 EP - 2699 PB - Wiley-Blackwell CY - Malden ER -