TY - JOUR A1 - Tang, Jo Sing Julia A1 - Smaczniak, Aline Debrassi A1 - Tepper, Lucas A1 - Rosencrantz, Sophia A1 - Aleksanyan, Mina A1 - Dähne, Lars A1 - Rosencrantz, Ruben R. T1 - Glycopolymer based LbL multilayer thin films with embedded liposomes JF - Macromolecular bioscience N2 - Layer-by-layer (LbL) self-assembly emerged as an efficient technique for fabricating coating systems for, e.g., drug delivery systems with great versatility and control. In this work, protecting group free and aqueous-based syntheses of bioinspired glycopolymer electrolytes aredescribed. Thin films of the glycopolymers are fabricated by LbL self-assembly and function as scaffolds for liposomes, which potentially can encapsulate active substances. The adsorbed mass, pH stability, and integrity of glycopolymer coatings as well as the embedded liposomes are investigated via whispering gallery mode (WGM) technology and quartz crystal microbalance with dissipation (QCM-D) monitoring , which enable label-free characterization. Glycopolymer thin films, with and without liposomes, are stable in the physiological pH range. QCM-D measurements verify the integrity of lipid vesicles. Thus, the fabrication of glycopolymer-based surface coatings with embedded and intact liposomes is presented. KW - glycopolymers KW - layer-by-layer self-assembly KW - liposomes KW - polyelectrolyte KW - multilayer film Y1 - 2022 U6 - https://doi.org/10.1002/mabi.202100461 SN - 1616-5187 SN - 1616-5195 VL - 22 IS - 4 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Bapolisi, Alain Murhimalika A1 - Kielb, Patrycja A1 - Bekir, Marek A1 - Lehnen, Anne-Catherine A1 - Radon, Christin A1 - Laroque, Sophie A1 - Wendler, Petra A1 - Müller-Werkmeister, Henrike A1 - Hartlieb, Matthias T1 - Antimicrobial polymers of linear and bottlebrush architecture BT - Probing the membrane interaction and physicochemical properties JF - Macromolecular rapid communications : publishing the newsletters of the European Polymer Federation N2 - Polymeric antimicrobial peptide mimics are a promising alternative for the future management of the daunting problems associated with antimicrobial resistance. However, the development of successful antimicrobial polymers (APs) requires careful control of factors such as amphiphilic balance, molecular weight, dispersity, sequence, and architecture. While most of the earlier developed APs focus on random linear copolymers, the development of APs with advanced architectures proves to be more potent. It is recently developed multivalent bottlebrush APs with improved antibacterial and hemocompatibility profiles, outperforming their linear counterparts. Understanding the rationale behind the outstanding biological activity of these newly developed antimicrobials is vital to further improving their performance. This work investigates the physicochemical properties governing the differences in activity between linear and bottlebrush architectures using various spectroscopic and microscopic techniques. Linear copolymers are more solvated, thermo-responsive, and possess facial amphiphilicity resulting in random aggregations when interacting with liposomes mimicking Escheria coli membranes. The bottlebrush copolymers adopt a more stable secondary conformation in aqueous solution in comparison to linear copolymers, conferring rapid and more specific binding mechanism to membranes. The advantageous physicochemical properties of the bottlebrush topology seem to be a determinant factor in the activity of these promising APs. KW - antimicrobial polymers KW - bottlebrush copolymers KW - liposomes KW - membrane KW - interactions KW - quartz crystal microbalance Y1 - 2022 U6 - https://doi.org/10.1002/marc.202200288 SN - 1521-3927 SN - 1022-1336 VL - 43 IS - 19 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Mertens, Monique A1 - Hilsch, Malte A1 - Haralampiev, Ivan A1 - Volkmer, Rudolf A1 - Wessig, Pablo A1 - Müller, Peter T1 - Synthesis and characterization of a new Bifunctionalized, Fluorescent, and Amphiphilic molecule for recruiting SH-Containing molecules to membranes JF - ChemBioChem N2 - This study describes the synthesis and characterization of an amphiphilic construct intended to recruit SH-containing molecules to membranes. The construct consists of 1)an aliphatic chain to enable anchoring within membranes, 2)a maleimide moiety to react with the sulfhydryl group of a soluble (bio)molecule, and 3)a fluorescence moiety to allow the construct to be followed by fluorescence spectroscopy and microscopy. It is shown that the construct can be incorporated into preformed membranes, thus allowing application of the approach with biological membranes. The close proximity between the fluorophore and the maleimide moiety within the construct causes fluorescence quenching. This allows monitoring of the reaction with SH-containing molecules by measurement of increases in fluorescence intensity and lifetime. Notably, the construct distributes into laterally ordered membrane domains of lipid vesicles, which is probably triggered by the length of its membrane anchor. The advantages of the new construct can be employed for several biological, biotechnological, and medicinal applications. KW - DBD dyes KW - fatty acids KW - liposomes KW - maleimide KW - membranes KW - palmitoylation Y1 - 2018 U6 - https://doi.org/10.1002/cbic.201800268 SN - 1439-4227 SN - 1439-7633 VL - 19 IS - 15 SP - 1643 EP - 1647 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Haralampiev, Ivan A1 - Mertens, Monique A1 - Schwarzer, Roland A1 - Herrmann, Andreas A1 - Volkmer, Rudolf A1 - Wessig, Pablo A1 - Mueller, Peter T1 - Recruitment of SH-Containing peptides to lipid and biological membranes through the use of a palmitic acid functionalized with a Maleimide Group JF - Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition N2 - This study presents a novel and easily applicable approach to recruit sulfhydryl-containing biomolecules to membranes by using a palmitic acid which is functionalized with a maleimide group. Notably, this strategy can also be employed with preformed (biological) membranes. The applicability of the assay is demonstrated by characterizing the binding of a Rhodamine-labeled peptide to lipid and cellular membranes using methods of fluorescence spectroscopy, lifetime measurement, and microscopy. Our approach offers new possibilities for preparing biologically active liposomes and manipulating living cells. KW - liposomes KW - maleimide KW - membranes KW - palmitic acid KW - palmitoylation KW - peptides Y1 - 2015 U6 - https://doi.org/10.1002/anie.201408089 SN - 1433-7851 SN - 1521-3773 VL - 54 IS - 1 SP - 323 EP - 326 PB - Wiley-VCH CY - Weinheim ER -