TY - JOUR A1 - Gupta, Banshi D. A1 - Pathak, Anisha A1 - Shrivastav, Anand T1 - Optical Biomedical Diagnostics Using Lab-on-Fiber Technology BT - a review JF - Photonics : open access journal N2 - Point-of-care and in-vivo bio-diagnostic tools are the current need for the present critical scenarios in the healthcare industry. The past few decades have seen a surge in research activities related to solving the challenges associated with precise on-site bio-sensing. Cutting-edge fiber optic technology enables the interaction of light with functionalized fiber surfaces at remote locations to develop a novel, miniaturized and cost-effective lab on fiber technology for bio-sensing applications. The recent remarkable developments in the field of nanotechnology provide innumerable functionalization methodologies to develop selective bio-recognition elements for label free biosensors. These exceptional methods may be easily integrated with fiber surfaces to provide highly selective light-matter interaction depending on various transduction mechanisms. In the present review, an overview of optical fiber-based biosensors has been provided with focus on physical principles used, along with the functionalization protocols for the detection of various biological analytes to diagnose the disease. The design and performance of these biosensors in terms of operating range, selectivity, response time and limit of detection have been discussed. In the concluding remarks, the challenges associated with these biosensors and the improvement required to develop handheld devices to enable direct target detection have been highlighted. KW - fiber optic sensors KW - synthesis KW - interferometry KW - fluorescence KW - SERS KW - SPR KW - immunosensors KW - enzymatic sensors KW - molecular imprinted polymers Y1 - 2022 U6 - https://doi.org/10.3390/photonics9020086 SN - 2304-6732 VL - 9 IS - 2 PB - MDPI CY - Basel ER - TY - JOUR A1 - Kogikoski Junior, Sergio A1 - Dutta, Anushree A1 - Bald, Ilko T1 - Spatial separation of plasmonic hot-electron generation and a hydrodehalogenation reaction center using a DNA wire JF - ACS nano N2 - Using hot charge carriers far from a plasmonic nanoparticle surface is very attractive for many applications in catalysis and nanomedicine and will lead to a better understanding of plasmon-induced processes, such as hot-charge-carrier- or heat-driven chemical reactions. Herein we show that DNA is able to transfer hot electrons generated by a silver nanoparticle over several nanometers to drive a chemical reaction in a molecule nonadsorbed on the surface. For this we use 8-bromo-adenosine introduced in different positions within a double-stranded DNA oligonucleotide. The DNA is also used to assemble the nanoparticles into nanoparticles ensembles enabling the use of surface-enhanced Raman scattering to track the decomposition reaction. To prove the DNA-mediated transfer, the probe molecule was insulated from the source of charge carriers, which hindered the reaction. The results indicate that DNA can be used to study the transfer of hot electrons and the mechanisms of advanced plasmonic catalysts. KW - plasmonics KW - DNA nanotechnology KW - hot electrons KW - charge transfer KW - SERS KW - superlattices Y1 - 2021 U6 - https://doi.org/10.1021/acsnano.1c09176 SN - 1936-0851 SN - 1936-086X VL - 15 IS - 12 SP - 20562 EP - 20573 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Liebig, Ferenc A1 - Sarhan, Radwan Mohamed A1 - Schmitt, Clemens Nikolaus Zeno A1 - Thünemann, Andreas F. A1 - Prietzel, Claudia Christina A1 - Bargheer, Matias A1 - Koetz, Joachim T1 - Gold nanotriangles with crumble topping and their influence on catalysis and surface-enhanced raman spectroscopy JF - ChemPlusChem N2 - By adding hyaluronic acid (HA) to dioctyl sodium sulfosuccinate (AOT)-stabilized gold nanotriangles (AuNTs) with an average thickness of 7.5 +/- 1 nm and an edge length of about 175 +/- 17 nm, the AOT bilayer is replaced by a polymeric HA-layer leading to biocompatible nanoplatelets. The subsequent reduction process of tetrachloroauric acid in the HA-shell surrounding the AuNTs leads to the formation of spherical gold nanoparticles on the platelet surface. With increasing tetrachloroauric acid concentration, the decoration with gold nanoparticles can be tuned. SAXS measurements reveal an increase of the platelet thickness up to around 14.5 nm, twice the initial value of bare AuNTs. HRTEM micrographs show welding phenomena between densely packed particles on the platelet surface, leading to a crumble formation while preserving the original crystal structure. Crumbles crystallized on top of the platelets enhance the Raman signal by a factor of around 20, and intensify the plasmon-driven dimerization of 4-nitrothiophenol (4-NTP) to 4,4 '-dimercaptoazobenzene in a yield of up to 50 %. The resulting crumbled nanotriangles, with a biopolymer shell and the absorption maximum in the second window for in vivo imaging, are promising candidates for biomedical sensing. KW - gold nanostructures KW - HRTEM KW - hyaluronic acid KW - monolayer formation KW - SERS Y1 - 2020 U6 - https://doi.org/10.1002/cplu.201900745 SN - 2192-6506 VL - 85 IS - 3 SP - 519 EP - 526 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Dutta, Anushree A1 - Schürmann, Robin A1 - Kogikoski Junior, Sergio A1 - Mueller, Niclas S. A1 - Reich, Stephanie A1 - Bald, Ilko T1 - Kinetics and mechanism of plasmon-driven dehalogenation reaction of brominated purine nucleobases on Ag and Au JF - ACS catalysis / American Chemical Society N2 - Plasmon-driven photocatalysis is an emerging and promising application of noble metal nanoparticles (NPs). An understanding of the fundamental aspects of plasmon interaction with molecules and factors controlling their reaction rate in a heterogeneous system is of high importance. Therefore, the dehalogenation kinetics of 8-bromoguanine (BrGua) and 8-bromoadenine (BrAde) on aggregated surfaces of silver (Ag) and gold (Au) NPs have been studied to understand the reaction kinetics and the underlying reaction mechanism prevalent in heterogeneous reaction systems induced by plasmons monitored by surface enhanced Raman scattering (SERS). We conclude that the time-average constant concentration of hot electrons and the time scale of dissociation of transient negative ions (TNI) are crucial in defining the reaction rate law based on a proposed kinetic model. An overall higher reaction rate of dehalogenation is observed on Ag compared with Au, which is explained by the favorable hot-hole scavenging by the reaction product and the byproduct. We therefore arrive at the conclusion that insufficient hole deactivation could retard the reaction rate significantly, marking itself as rate-determining step for the overall reaction. The wavelength dependency of the reaction rate normalized to absorbed optical power indicates the nonthermal nature of the plasmon-driven reaction. The study therefore lays a general approach toward understanding the kinetics and reaction mechanism of a plasmon-driven reaction in a heterogeneous system, and furthermore, it leads to a better understanding of the reactivity of brominated purine derivatives on Ag and Au, which could in the future be exploited, for example, in plasmon-assisted cancer therapy. KW - hot-electrons KW - plasmon-driven catalysis KW - fractal kinetics KW - brominated KW - purines KW - SERS KW - hole scavengers Y1 - 2021 U6 - https://doi.org/10.1021/acscatal.1c01851 SN - 2155-5435 VL - 11 IS - 13 SP - 8370 EP - 8381 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Heck, Christian A1 - Prinz, Julia A1 - Dathe, Andre A1 - Merk, Virginia A1 - Stranik, Ondrej A1 - Fritzsche, Wolfgang A1 - Kneipp, Janina A1 - Bald, Ilko T1 - Gold Nanolenses Self-Assembled by DNA Origami JF - ACS Photonics N2 - Nanolenses are self-similar chains of metal nanoparticles, which can theoretically provide extremely high field enhancements. Yet, the complex structure renders their synthesis challenging and has hampered closer analyses so far. Here, DNA origami is used to self-assemble 10, 20, and 60 nm gold nanoparticles as plasmonic gold nanolenses (AuNLs) in solution and in billions of copies. Three different geometrical arrangements are assembled, and for each of the three designs, surface-enhanced Raman scattering (SERS) capabilities of single AuNLs are assessed. For the design which shows the best properties, SERS signals from the two different internal gaps are compared by selectively placing probe dyes. The highest Raman enhancement is found for the gap between the small and medium nanoparticle, which is indicative of a cascaded field enhancement. KW - plasmonics KW - DNA origami KW - SERS KW - nanolenses KW - gold nanoparticles Y1 - 2017 U6 - https://doi.org/10.1021/acsphotonics.6b00946 SN - 2330-4022 VL - 4 SP - 1123 EP - 1130 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Liebig, Ferenc A1 - Sarhan, Radwan Mohamed A1 - Prietzel, Claudia Christina A1 - Schmitt, Clemens Nikolaus Zeno A1 - Bargheer, Matias A1 - Koetz, Joachim T1 - Tuned Surface-Enhanced raman scattering performance of undulated Au@Ag triangles JF - ACS applied nano materials N2 - Negatively charged ultraflat gold nanotriangles (AuNTs) stabilized by the anionic surfactant dioctyl sodium sulfosuccinate (AOT) were reloaded with the cationic surfactant benzylhexadecyldimethylammonium chloride (BDAC). Because of the spontaneous formation of a catanionic AOT micelle/BDAC bilayer onto the surface of the reloaded AuNTs, a reduction of Ag+ ions leads to the formation of spherical silver nanoparticles (AgNPs). With increasing concentration of AgNPs on the AuNTs, the localized surface plasmon resonance (LSPR) is shifted stepwise from 1300 to 800 nm. The tunable LSPR enables to shift the extinction maximum to the wavelength of the excitation laser of the Raman microscope at 785 nm. Surface-enhanced Raman scattering (SERS) experiments performed under resonance conditions show an SERS enhancement factor of the analyte molecule rhodamine RG6 of 5.1 X 10(5), which can be related to the silver hot spots at the periphery of the undulated gold nanoplatelets. KW - gold nanotriangles KW - catanionic surfactant bilayer KW - undulated nanoplatelets KW - SERS KW - LSPR Y1 - 2018 U6 - https://doi.org/10.1021/acsanm.8b00570 SN - 2574-0970 VL - 1 IS - 4 SP - 1995 EP - 2003 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Heck, Christian A1 - Kanehira, Yuya A1 - Kneipp, Janina A1 - Bald, Ilko T1 - Placement of Single Proteins within the SERS Hot Spots of Self-Assembled Silver Nanolenses JF - Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition N2 - This study demonstrates the bottom-up synthesis of silver nanolenses. A robust coating protocol enabled the functionalization of differently sized silver nanoparticles with DNA single strands of orthogonal sequence. Coated particles 10nm, 20nm, and 60nm in diameter were self-assembled by DNA origami scaffolds to form silver nanolenses. Single molecules of the protein streptavidin were selectively placed in the gap of highest electric field enhancement. Streptavidin labelled with alkyne groups served as model analyte in surface-enhanced Raman scattering (SERS) experiments. By correlated Raman mapping and atomic force microscopy, SERS signals of the alkyne labels of a single streptavidin molecule, from a single silver nanolens, were detected. The discrete, self-similar aggregates of solid silver nanoparticles are promising for plasmonic applications. KW - DNA origami KW - protein analysis KW - SERS KW - silver nanoparticles KW - streptavidin Y1 - 2018 U6 - https://doi.org/10.1002/anie.201801748 SN - 1433-7851 SN - 1521-3773 VL - 57 IS - 25 SP - 7444 EP - 7447 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Liebig, Ferenc A1 - Sarhan, Radwan Mohamed A1 - Sander, Mathias A1 - Koopman, Wouter-Willem Adriaan A1 - Schuetz, Roman A1 - Bargheer, Matias A1 - Koetz, Joachim T1 - Deposition of Gold Nanotriangles in Large Scale Close-Packed Monolayers for X-ray-Based Temperature Calibration and SERS Monitoring of Plasmon-Driven Catalytic Reactions JF - ACS applied materials & interfaces KW - gold nanotriangles KW - monolayer formation KW - SERS KW - dimerization KW - heat measurement Y1 - 2017 U6 - https://doi.org/10.1021/acsami.7b07231 SN - 1944-8244 VL - 9 SP - 20247 EP - 20253 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Balderas-Valadez, Ruth Fabiola A1 - Estevez-Espinoza, J. O. A1 - Salazar-Kuri, U. A1 - Pacholski, Claudia A1 - Mochan, Wolf Luis A1 - Agarwal, Vivechana T1 - Fabrication of ordered tubular porous silicon structures by colloidal lithography and metal assisted chemical etching BT - SERS performance of 2D porous silicon structures JF - Applied surface science : a journal devoted to applied physics and chemistry of surfaces and interfaces N2 - Fabrication of well-ordered porous silicon tubular structures using colloidal lithography and metal assisted chemical etching is reported. A continuous hexagonal hole/particle gold pattern was designed over monocrystalline silicon through deposition of polyNIPAM microspheres, followed by the surface decoration with gold nanoparticles and thermal treatment. An etching reaction with HF, ethanol and H2O2 dissolved the silicon in contact with the metal nanoparticles (NP), creating a porous tubular array in the "off-metal area". The morphological characterization revealed the formation of a cylindrical hollow porous tubular shape with external and internal diameter of approx. 900 nm and 400 nm respectively, though it can be tuned to other desired sizes by choosing an appropriate dimension for the microspheres. The porous morphology and optical properties were studied as a function of resistivity of silicon substrates. Compared to two different gold templates on cSi and nontubular porous pillar structures, porous silicon tubular framework revealed a maximum surface enhanced Raman scattering enhancement factor of 10(6) for the detection of 6-mercaptopurine (6-MP). Due to the large surface area available for any surface modification, open nanostructured platforms such as those studied here have potential applications in the field of reflection/photoluminescene and SERS based optical bio-/chemical sensors. KW - SERS KW - Porous silicon KW - MACE KW - Colloidal lithography KW - PolyNIPAM KW - 6-Mercaptopurine Y1 - 2018 U6 - https://doi.org/10.1016/j.apsusc.2018.08.120 SN - 0169-4332 SN - 1873-5584 VL - 462 SP - 783 EP - 790 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Heck, Christian A1 - Kanehira, Yuya A1 - Kneipp, Janina A1 - Bald, Ilko T1 - Amorphous Carbon Generation as a Photocatalytic Reaction on DNA-Assembled Gold and Silver Nanostructures JF - Molecules N2 - Background signals from in situ-formed amorphous carbon, despite not being fully understood, are known to be a common issue in few-molecule surface-enhanced Raman scattering (SERS). Here, discrete gold and silver nanoparticle aggregates assembled by DNA origami were used to study the conditions for the formation of amorphous carbon during SERS measurements. Gold and silver dimers were exposed to laser light of varied power densities and wavelengths. Amorphous carbon prevalently formed on silver aggregates and at high power densities. Time-resolved measurements enabled us to follow the formation of amorphous carbon. Silver nanolenses consisting of three differently-sized silver nanoparticles were used to follow the generation of amorphous carbon at the single-nanostructure level. This allowed observation of the many sharp peaks that constitute the broad amorphous carbon signal found in ensemble measurements. In conclusion, we highlight strategies to prevent amorphous carbon formation, especially for DNA-assembled SERS substrates. KW - amorphous carbon KW - DNA origami KW - SERS KW - nanoparticle dimers KW - nanolenses Y1 - 2019 U6 - https://doi.org/10.3390/molecules24122324 SN - 1420-3049 VL - 24 IS - 12 PB - MDPI CY - Basel ER -