TY - JOUR A1 - Wöhl-Bruhn, Stefanie A1 - Badar, Muhammad A1 - Bertz, Andreas A1 - Tiersch, Brigitte A1 - Koetz, Joachim A1 - Menzel, Henning A1 - Müller, Peter P. A1 - Bunjes, Heike T1 - Comparison of in vitro and in vivo protein release from hydrogel systems JF - Journal of controlled release N2 - Hydrogel systems based on hydroxyethyl starch-polyethylene glycol methacrylate (HES-P(EG)(6)MA) or hydroxyethyl starch methacrylate (HES-MA) were used to assess the protein release behavior. Here, we analyzed the in vitro release of FITC-anti-human antibodies incorporated in either HES-P(EG)(6)MA or HES-MA hydrogel delivery systems in PBS or human serum. In addition, hydrogel disks and microparticles prepared from the two polymers were subcutaneously implanted in BALB/c mice. The in vivo release of FITC-IgG was non-invasively monitored by an in vivo imaging system (IVIS 200) over a time period of up to 3 months. The imaging system allowed to asses individual animals over time, therefore only a small number of animals was required to obtain high quality data. The reduction in fluorescence intensity at the site of administration was compared to in vitro release profiles. These investigations demonstrated a sustained release from HES-MA hydrogel disks compared to rapidly degrading HES-P(EG)(6)MA disks and microparticles. The sustained release from HES-MA disks could be further optimized by using increased polymer concentrations. Human serum as in vitro release medium reflected better the in vivo release from HES-P(EG)(6)MA systems than PBS, suggesting that the presence of organic substances like proteins or lipids may play a significant role for the release kinetics. KW - In vivo imaging system (IVIS) KW - Hydrogel disks KW - Hydrogel microparticles KW - Release KW - In vivo-in vitro correlation KW - Hydroxyethyl starch (HES) Y1 - 2012 U6 - https://doi.org/10.1016/j.jconrel.2012.05.049 SN - 0168-3659 VL - 162 IS - 1 SP - 127 EP - 133 PB - Elsevier CY - Amsterdam ER -