TY - JOUR A1 - Bertz, Andreas A1 - Wöhl-Bruhn, Stefanie A1 - Miethe, Sebastian A1 - Tiersch, Brigitte A1 - Koetz, Joachim A1 - Hust, Michael A1 - Bunjes, Heike A1 - Menzel, Henning T1 - Encapsulation of proteins in hydrogel carrier systems for controlled drug delivery influence of network structure and drug size on release rate JF - Journal of biotechnology N2 - Novel hydrogels based on hydroxyethyl starch modified with polyethylene glycol methacrylate (HES-P(EG)(6)MA) were developed as delivery system for the controlled release of proteins. Since the drug release behavior is supposed to be related to the pore structure of the hydrogel network the pore sizes were determined by cryo-SEM, which is a mild technique for imaging on a nanometer scale. The results showed a decreasing pore size and an increase in pore homogeneity with increasing polymer concentration. Furthermore, the mesh sizes of the hydrogels were calculated based on swelling data. Pore and mesh size were significantly different which indicates that both structures are present in the hydrogel. The resulting structural model was correlated with release data for bulk hydrogel cylinders loaded with FITC-dextran and hydrogel microspheres loaded with FITC-IgG and FITC-dextran of different molecular size. The initial release depended much on the relation between hydrodynamic diameter and pore size while the long term release of the incorporated substances was predominantly controlled by degradation of the network of the much smaller meshes. KW - Hydrogel KW - Hydrogel microspheres KW - Network structure KW - Release studies KW - Protein delivery KW - Mesh size Y1 - 2013 U6 - https://doi.org/10.1016/j.jbiotec.2012.06.036 SN - 0168-1656 VL - 163 IS - 2 SP - 243 EP - 249 PB - Elsevier CY - Amsterdam ER -