TY - JOUR A1 - Kleinpeter, Erich A1 - Koch, Andreas T1 - Paramagnetic ring current effects in anti-aromatic structures subject to substitution/annelation quantified by spatial magnetic properties (TSNMRS) JF - Tetrahedron N2 - The spatial magnetic properties, through-space NMR shieldings (TSNMRS), of the typically anti-aromatic cyclopentadienyl cation, cyclobutadiene, pentalene, s-indacene and of substituted/annelated analogues of the latter structures have been calculated using the CIAO perturbation method employing the nucleus independent chemical shift (NICS) concept and visualized as iso-chemical-shielding surfaces (ICSS) of various size and direction. The TSNMRS values were employed to visualize and quantify the dia(para) magnetic ring current effects in the studied compounds. The interplay of dia(para)magnetic ring current effects due to substitution/annelation caused by heavy exo-cyclic n,pi-electron delocalization can be qualified. KW - Aromaticity KW - Anti-aromaticity KW - Through-space NMR shieldings (TSNMRS) KW - GIAO KW - NICS KW - Annelation effect Y1 - 2018 U6 - https://doi.org/10.1016/j.tet.2017.12.020 SN - 0040-4020 VL - 74 IS - 7 SP - 700 EP - 710 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Kleinpeter, Erich A1 - Koch, Andreas T1 - Intramolecular carbene stabilization via 3c,2e bonding on basis of the magnetic criterion JF - Tetrahedron : the international journal for the rapid publication of full original research papers and critical reviews in organic chemistry N2 - The spatial magnetic properties, through-space NMR shieldings (TSNMRS), of bent cyclobutylcarbene 8, 1,2-diboretane-3-ylidene 9, and some carbene analogues of boron 14-18 as most intriguing examples of carbenes, which can be stabilized as homoaromatic systems with 3c,2e bonding, have been calculated using the GIAO perturbation method employing the nucleus independent chemical shift (NICS) concept and the results visualized as iso-chemical-shielding surfaces (ICSS) of various size and direction. The TSNMRS values (actually, ring current effect/anisotropy effects as measurable in H-1 NMR spectroscopy) are employed to qualify and quantify the degree of present 3c,2e-homoaromaticity. Results are confirmed by geometry (bond angles and bond lengths) and spectroscopic data, the delta(B-11)/ppm data and the C-13 chemical shifts of the carbene electron-deficient centre. KW - Cyclobutylcarbene KW - 1,2-diboretane-3-ylidene KW - 3c,2e-bonding KW - Through-space NMR shieldings (TSNMRS) KW - NICS Y1 - 2021 U6 - https://doi.org/10.1016/j.tet.2021.132357 SN - 0040-4020 SN - 1464-5416 VL - 95 PB - Elsevier Science CY - Amsterdam ER - TY - JOUR A1 - Kleinpeter, Erich A1 - Koch, Andreas T1 - Stable Carbenes or Betaines? JF - European journal of organic chemistry N2 - The anisotropy effect in H-1 NMR spectroscopy can be readily employed to indicate the position of carbene/betaine mesomeric equilibria. NR2 substituted carbene/betaines tend to adopt betaine structures, whereas in the absence of NR2 substituents, the betaine structures cannot stabilise the structure through both -donation effects of the NMe2 groups and the electronegativity of the nitrogen atoms, and the corresponding carbene-like structures are preferred. These conclusions are supported by calculated bond orders and (C-13)/ppm values. The spatial magnetic properties of isonitriles and carbon monoxide, which can be counted as stable carbenes or, at least, as carbene-analogues, also exist as stable betaine structures, which is again supported by structural and magnetic properties. KW - Carbenes KW - Betaines KW - Mesomerism KW - Through-space NMR shieldings (TSNMRS) KW - NMR spectroscopy KW - Conformation analysis Y1 - 2018 U6 - https://doi.org/10.1002/ejoc.201800462 SN - 1434-193X SN - 1099-0690 VL - 2018 IS - 24 SP - 3114 EP - 3121 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Kleinpeter, Erich A1 - Koch, Andreas T1 - Is the term "Carbene" justified for remote N-heterocyclic carbenes (r-NHCs) and abnormal N-heterocyclic carbenes (aNHCs/MICs)? JF - Tetrahedron N2 - The spatial magnetic properties, through-space NMR shieldings (TSNMRS), of typical N-heterocyclic carbenes NHCs, r-NHCs, a-NHCs and MICs have been calculated using the GIAO perturbation method employing the nucleus independent chemical shift (NICS) concept and visualized as iso-chemical-shielding surfaces (ICSS) of various size and direction. Prior to that both structures and 13C chemical shifts were calculated and in case of isolated carbenes the computed δ(13C)/ppm values compared (as a quality criterion for obtained structures) with the experimental ones. The TSNMRS values of the studied carbenes, which are in mesomeric equilibrium with zwitterionic (ylide/betaine/mesoionic) resonance contributors, are employed to qualify and quantify the present electronic structure and if the term carbene is still justified to denote the compounds studied. The results, thus obtained from spatial magnetic properties (TSNMRS), are compared with the geometry of the compounds, the corresponding WIBERG's bond index values, and the 13C chemical shifts especially of the carbene electron-deficient centre. KW - Carbene or zwitterions KW - Ylide KW - Mesomeric equilibrium of carbene/zwitterion KW - Through-space NMR shieldings (TSNMRS) KW - NICS Y1 - 2019 U6 - https://doi.org/10.1016/j.tet.2019.02.005 SN - 0040-4020 VL - 75 IS - 11 SP - 1548 EP - 1554 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Kleinpeter, Erich A1 - Koch, Andreas T1 - Spatial magnetic properties subject to lone pair and pi electron delocalization in benzenoid and quinoid structures are quinoid tautomers really nonaromatic? JF - Arkivoc : free online journal of organic chemistry N2 - The spatial magnetic properties, through-space NMR shieldings (TSNMRS), of benzenoid and quinoid tautomeric structures such as benzodifurantrione and phenazine-type molecules have been calculated using the GIAO perturbation method employing the nucleus independent chemical shift (NICS) concept of Paul von Rague Schleyer and visualized as iso-chemical-shielding surfaces (ICSS) of various size and direction. The TSNMRS values were employed to quantify and visualize the partial aromaticity of the studied compounds. In the case of the surprisingly more stable quinoid tautomers, the aromaticity-synonymous with stability due to the conjugation of p electrons and lone pairs-was not found to be particularly reduced. KW - Through-space NMR shieldings (TSNMRS) KW - GIAO KW - NICS KW - benzenoid structures KW - quinoid structures KW - aromaticity Y1 - 2012 SN - 1551-7004 SP - 94 EP - 108 PB - ARKAT CY - Gainesville ER - TY - JOUR A1 - Kleinpeter, Erich A1 - Koch, Andreas T1 - The anisotropic effect of functional groups in H-1 NMR spectra is the molecular response property of spatial NICS-the frozen conformational equilibria of 9-arylfluorenes JF - Tetrahedron N2 - Rotation about the single bond adjoining the aryl and fluorene moieties in 9-arylfluorenes can be frozen out on the NMR timescale if methyl groups are located at either one or both of the ortho positions of the aryl substituent. In the ground-state of these rotamers, the planes of the aryl and fluorene moieties are perpendicular to each other and the methyl substituents are consequently positioned either above the fluorene moiety or in-plane with it; thus, the methyl protons are either shielded or deshielded, respectively, due to the ring current effect of the fluorene moiety. This anisotropic effect on the H-1 chemical shifts of the methyl protons has been quantified on the basis of through-space NMR shieldings (TSNMRS) and subsequently Delta delta(calcd) compared with the experimentally observed chemical shift differences, Delta delta(exp). In this context, the experimental anisotropic effects of functional groups in the H-1 NMR have proven to quantitatively be the molecular response property of theoretical spatial nucleus independent chemical shieldings (NICS). Differences between Delta delta(calcd) and Delta delta(exp) were, for the first time, also quantified as arising from steric compression. KW - Through-space NMR shieldings (TSNMRS) KW - Spatial NICS KW - Anisotropic effect KW - Iso-chemical-shielding surfaces (ICSS) KW - 9-Arylfluorenes Y1 - 2011 U6 - https://doi.org/10.1016/j.tet.2011.06.005 SN - 0040-4020 VL - 67 IS - 32 SP - 5740 EP - 5743 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Kleinpeter, Erich A1 - Koch, Andreas T1 - Identification of mesomeric substructures by through-space NMR shieldings (TSNMRS). Trimethine cyanine/merocyanine-like or aromatic pi-electron delocalization? JF - Tetrahedron N2 - The spatial magnetic properties, through-space NMR shieldings (TSNMRS), of amino-substituted heteraromatic six-membered ring systems such as pyrylium/thiopyrylium analogues have been calculated using the GIAO perturbation method employing the nucleus independent chemical shift (NICS) concept and visualized as iso-chemical-shielding surfaces (ICSS) of various size and direction. The TSNMRS values were employed to quantify and visualize the existing aromaticity of the studied compounds. Due to strong conjugation of six-membered ring pi-electrons and lone pairs of the exo-cyclic amino substituents (restricted rotation about partial C,N double bonds) the interplay of still aromatic and already dominating trimethine cyanine/merocyanine-like substructures can be estimated. (C) 2017 Elsevier Ltd. All rights reserved. KW - Through-space NMR shieldings (TSNMRS) KW - GIAO KW - NICS KW - Benzenoid structures KW - Cyanine/merocyanine-like structures KW - Aromaticity Y1 - 2017 U6 - https://doi.org/10.1016/j.tet.2017.05.062 SN - 0040-4020 VL - 73 SP - 4265 EP - 4274 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Hansen, Poul Erik A1 - Koch, Andreas A1 - Kleinpeter, Erich T1 - Ring current and anisotropy effects on OH chemical shifts in resonance-assisted intramolecular H-bonds JF - Tetrahedron letters N2 - Ring current effects on resonance-assisted and intramolecularly bridged hydrogen bond protons for 10-hydroxybenzo[h]quinoline 1 and a number of related compounds were calculated and the through-space NMR shieldings (TSNMRS) obtained hereby visualized as iso-chemical-shielding surfaces (ICSS) of various size and direction. These calculations revealed that this through-space effect is comparably large (up to 2 ppm) dependent on the position of the intramolecularly bridged OH proton, and therefore, contribute considerably to the chemical shift of the latter making it questionable to use delta(OH)/ppm in the estimation of intramolecular hydrogen bond strength without taking this into account. Furthermore, the anisotropy effects of additional groups on the aromatic moiety (e.g. the carbonyl group in salicylaldehyde or in o-hydroxyacetophenone of ca. 0.6 ppm deshielding) should also be considered. These through-space effects need to be taken into account when using OH chemical shifts to estimate hydrogen bond strength. KW - RA-intramolecular hydrogen bond KW - Through-space NMR shieldings (TSNMRS) KW - Iso-chemical-shielding surfaces (ICSS) KW - Ring current effect KW - Anisotropy effect Y1 - 2018 U6 - https://doi.org/10.1016/j.tetlet.2018.05.006 SN - 0040-4039 VL - 59 IS - 23 SP - 2288 EP - 2292 PB - Elsevier CY - Oxford ER -