TY - JOUR A1 - Knie, Christopher A1 - Utecht, Manuel Martin A1 - Zhao, Fangli A1 - Kulla, Hannes A1 - Kovalenko, Sergey A1 - Brouwer, Albert M. A1 - Saalfrank, Peter A1 - Hecht, Stefan A1 - Bleger, David T1 - ortho-Fluoroazobenzenes: visible light switches with very long-lived Z isomers JF - Chemistry - a European journal N2 - Improving the photochemical properties of molecular photoswitches is crucial for the development of light-responsive systems in materials and life sciences. ortho-Fluoroazobenzenes are a new class of rationally designed photochromic azo compounds with optimized properties, such as the ability to isomerize with visible light only, high photoconversions, and unprecedented robust bistable character. Introducing sigma-electron-withdrawing F atoms ortho to the N=N unit leads to both an effective separation of the n -> pi* bands of the E and Z isomers, thus offering the possibility of using these two transitions for selectively inducing E/Z iso-merizations, and greatly enhanced thermal stability of the Z isomers. Additional para-electron-withdrawing groups (EWGs) work in concert with ortho-F atoms, giving rise to enhanced separation of the n -> pi* transitions. A comprehensive study of the effect of substitution on the key photochemical properties of ortho-fluoroazobenzenes is reported herein. In particular, the position, number, and nature of the EWGs have been varied, and the visible light photoconversions, quantum yields of isomerization, and thermal stabilities have been measured and rationalized by DFT calculations. KW - azobenzenes KW - photochromism KW - photoswitches KW - substituent effects KW - visible light Y1 - 2014 U6 - https://doi.org/10.1002/chem.201404649 SN - 0947-6539 SN - 1521-3765 VL - 20 IS - 50 SP - 16492 EP - 16501 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Titov, Evgenii A1 - Sharma, Anjali A1 - Lomadze, Nino A1 - Saalfrank, Peter A1 - Santer, Svetlana A1 - Bekir, Marek T1 - Photoisomerization of an azobenzene-containing surfactant within a micelle JF - ChemPhotoChem N2 - Photosensitive azobenzene-containing surfactants have attracted great attention in past years because they offer a means to control soft-matter transformations with light. At concentrations higher than the critical micelle concentration (CMC), the surfactant molecules aggregate and form micelles, which leads to a slowdown of the photoinduced trans -> cis azobenzene isomerization. Here, we combine nonadiabatic dynamics simulations for the surfactant molecules embedded in the micelles with absorption spectroscopy measurements of micellar solutions to uncover the reasons responsible for the reaction slowdown. Our simulations reveal a decrease of isomerization quantum yields for molecules inside the micelles. We also observe a reduction of extinction coefficients upon micellization. These findings explain the deceleration of the trans -> cis switching in micelles of the azobenzene-containing surfactants. KW - azobenzene KW - micelles KW - photoswitches KW - rate constants KW - surfactants KW - surface hopping Y1 - 2021 U6 - https://doi.org/10.1002/cptc.202100103 SN - 2367-0932 VL - 5 IS - 10 SP - 926 EP - 932 PB - Wiley-VCH CY - Weinheim ER -