TY - JOUR A1 - Floss, Gereon A1 - Granucci, Giovanni A1 - Saalfrank, Peter T1 - Surface hopping dynamics of direct trans -> cis photoswitching of an azobenzene derivative in constrained adsorbate geometries JF - The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr N2 - With ongoing miniaturization of electronic devices, the need for individually addressable, switchable molecules arises. An example are azobenzenes on surfaces which have been shown to be switchable between trans and cis forms. Here, we examine the "direct" (rather than substrate-mediated) channel of the trans -> cis photoisomerization after pi pi* excitation of tetra-tert-butyl-azobenzene physisorbed on surfaces mimicking Au(111) and Bi(111), respectively. In spirit of the direct channel, the electronic structure of the surface is neglected, the latter merely acting as a rigid platform which weakly interacts with the molecule via Van-der-Waals forces. Starting from thermal ensembles which represent the trans-form, sudden excitations promote the molecules to pi pi*-excited states which are non-adiabatically coupled among themselves and to a n pi*-excited and the ground state, respectively. After excitation, relaxation to the ground state by internal conversion takes place, possibly accompanied by isomerization. The process is described here by "on the fly" semiclassical surface hopping dynamics in conjunction with a semiempirical Hamiltonian (AM1) and configuration-interaction type methods. It is found that steric constraints imposed by the substrate lead to reduced but non-vanishing, trans -> cis reaction yields and longer internal conversion times than for the isolated molecule. Implications for recent experiments for azobenzenes on surfaces are discussed. KW - AM1 calculations KW - bismuth KW - configuration interactions KW - excited states KW - gold KW - isomerisation KW - organic compounds KW - photochemistry KW - van der Waals forces Y1 - 2012 U6 - https://doi.org/10.1063/1.4769087 SN - 0021-9606 VL - 137 IS - 23 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Titov, Evgenii T1 - On the low-lying electronically excited states of azobenzene dimers BT - Transition density matrix analysis JF - Molecules : a journal of synthetic chemistry and natural product chemistry / Molecular Diversity Preservation International N2 - Azobenzene-containing molecules may associate with each other in systems such as self-assembled monolayers or micelles. The interaction between azobenzene units leads to a formation of exciton states in these molecular assemblies. Apart from local excitations of monomers, the electronic transitions to the exciton states may involve charge transfer excitations. Here, we perform quantum chemical calculations and apply transition density matrix analysis to quantify local and charge transfer contributions to the lowest electronic transitions in azobenzene dimers of various arrangements. We find that the transitions to the lowest exciton states of the considered dimers are dominated by local excitations, but charge transfer contributions become sizable for some of the lowest pi pi* electronic transitions in stacked and slip-stacked dimers at short intermolecular distances. In addition, we assess different ways to partition the transition density matrix between fragments. In particular, we find that the inclusion of the atomic orbital overlap has a pronounced effect on quantifying charge transfer contributions if a large basis set is used. KW - azobenzene KW - dimer KW - transition density matrix KW - exciton KW - charge transfer KW - excited states KW - TD-DFT KW - ADC(2) Y1 - 2021 U6 - https://doi.org/10.3390/molecules26144245 SN - 1420-3049 VL - 26 IS - 14 PB - MDPI CY - Basel ER -