TY - JOUR A1 - Vishnevetskaya, Natalya S. A1 - Hildebrand, Viet A1 - Niebuur, Bart-Jan A1 - Grillo, Isabelle A1 - Filippov, Sergey K. A1 - Laschewsky, Andre A1 - Müller-Buschbaum, Peter A1 - Papadakis, Christine M. T1 - Aggregation Behavior of Doubly Thermoresponsive Polysulfobetaine-b-poly(N-isopropylacrylamide) Diblock Copolymers JF - Macromolecules : a publication of the American Chemical Society N2 - A 2-fold thermoresponsive diblock copolymer PSPP430-b-PNIPAM(200) consisting of a zwitterionic polysulfobetaine (PSPP) block and a nonionic poly(N-isopropylacrylamide) (PNIPAM) block is prepared by successive RAFT polymerizations. In aqueous solution, the corresponding homopolymers PSPP and PNIPAM feature both upper and lower critical solution temperature (UCST and LCST) behavior, respectively. The diblock copolymer exhibits thermally induced "schizophrenic" aggregation behavior in aqueous solutions. Moreover, the ion sensitivity of the, cloud point of the zwitterionic PSPP block to both the ionic strength and the nature of the salt offers the possibility to create switchable systems which respond sensitively to changes of the temperature and of the electrolyte type and concentration. The diblock copolymer solutions in D2O are investigated by means of turbidimetry and small-angle neutron scattering (SANS) with respect to the phase behavior and the self-assembled structures in dependence on temperature and electrolyte content. Marked, differences of the aggregation below the UCST-type and above the LCST-type transition are observed. The addition of a small amount of NaBr (0.004 M) does not affect the overall behavior, and only the UCST-type transition and aggregate structures are slightly altered, reflecting the well-known ion sensitivity of the zwitterionic PSPP block. Y1 - 2016 U6 - https://doi.org/10.1021/acs.macromol.6b01186 SN - 0024-9297 SN - 1520-5835 VL - 49 SP - 6655 EP - 6668 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Vishnevetskaya, Natalya S. A1 - Hildebrand, Viet A1 - Niebuur, Bart-Jan A1 - Grillo, Isabelle A1 - Filippov, Sergey K. A1 - Laschewsky, Andre A1 - Müller-Buschbaum, Peter A1 - Papadakis, Christine M. T1 - "Schizophrenic" Micelles from Doubly Thermoresponsive Polysulfobetaine-b-poly(N-isopropylmethacrylamide) Diblock Copolymers JF - Macromolecules : a publication of the American Chemical Society Y1 - 2017 U6 - https://doi.org/10.1021/acs.macromol.7b00356 SN - 0024-9297 SN - 1520-5835 VL - 50 SP - 3985 EP - 3999 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Vishnevetskaya, Natalya S. A1 - Hildebrand, Viet A1 - Dyakonova, Margarita A. A1 - Niebuur, Bart-Jan A1 - Kyriakos, Konstantinos A1 - Raftopoulos, Konstantinos N. A1 - Di, Zhenyu A1 - Müller-Buschbaum, Peter A1 - Laschewsky, Andre A1 - Papadakis, Christine M. T1 - Dual orthogonal switching of the "Schizophrenic" self-assembly of diblock copolymers JF - Macromolecules : a publication of the American Chemical Society N2 - Based on diblock copolymers, a pair of "schizophrenic" micellar systems is designed by combining a nonionic and thermoresponsive block with a zwitterionic block, which is thermoresponsive and salt-sensitive. The nonionic block is poly(N-isopropylacrylamide) (PNIPAM) or poly(N-isopropylmethacrylamide) (PNIPMAM) and exhibits a lower critical solution temperature (LCST) behavior in aqueous solution. The zwitterionic block is a polysulfobetaine, i.e., poly(4((3-methacrylamidopropyl)dimethylammonio)butane-1-sulfonate) (PSBP), and has an upper critical solution temperature (UCST) behavior with the clearing point decreasing with increasing salt concentration. The PSBP-b-PNIPAM and PSBP-b-PNIPMAM diblock copolymers are prepared by successive reversible addition-fragmentation chain transfer (RAFT) polymerizations. The PSBP block is chosen such that the clearing point of the homopolymer is significantly higher in pure water than the cloud point of PNIPAM or PNIPMAM. Using turbidimetry, H-1 NMR, and small-angle neutron scattering, we investigate the overall phase behavior as well as the structure and interaction between the micelles and the intermediate phase, both in salt-free D2O and in 0.004 M NaBr in D2O in a wide temperature range. We find that PSBP-b-PNIPAM at 50 g L-1 in salt-free D2O is turbid in the entire temperature range. It forms spherical micelles below the cloud point of PNIPAM and cylindrical micelles above. Similar behavior is observed for PSBP-b-PNIPMAM at 50 g L-1 in salt-free D2O with a slight and smooth increase of the light transmission below the cloud point of PNIPMAM and an abrupt decrease above. Upon addition of 0.004 M NaBr, the UCST-type cloud point of the PSBP-block is notably decreased, and an intermediate regime is encountered below the cloud point of PNIPMAM, where the light transmission is slightly enhanced. In this regime, the polymer solution exhibits behavior typical for polyelectrolyte solutions. Thus, double thermosensitive and salt-sensitive behavior with "schizophrenic" micelle formation is found, and the width of the intermediate regime, where both blocks are hydrophilic, can be tuned by the addition of electrolyte. Y1 - 2018 U6 - https://doi.org/10.1021/acs.macromol.8b00096 SN - 0024-9297 SN - 1520-5835 VL - 51 IS - 7 SP - 2604 EP - 2614 PB - American Chemical Society CY - Washington ER -