TY - JOUR A1 - Bastian, Philipp U. A1 - Nacak, Selma A1 - Roddatis, Vladimir A1 - Kumke, Michael Uwe T1 - Tracking the motion of lanthanide ions within core-shell-shell NaYF4 nanocrystals via resonance energy transfer JF - The journal of physical chemistry : C N2 - Lanthanide resonance energy transfer (LRET) was used to investigate the motion of dopant ions during the synthesis of core-shell-shell-nanocrystals (NCs) that are frequently used as frequency upconversion materials. Reaction conditions (temperature, solvent) as well as lattice composition and precursors were adapted from a typical hydrothermal synthesis approach used to obtain upconversion nanoparticles (UCNPs). Instead of adding the lanthanide ions Yb3+/Er3+ as the sensitizer/activator couple, Eu3+/Nd3+ as the donor/acceptor were added as the LRET pair to the outer shell (Eu-3) and the core (Nd-3). By tailoring the thickness of the insulation shell ("middle shell"), the expected distance between the donor and the acceptor was increased beyond 2 R-0, a distance for which no LRET is expected. The successful synthesis of core- shell-shell NCs with different thicknesses of the insulation layer was demonstrated by high-resolution transmission electron microscopy measurement. The incorporation of the Eu3+ ions into the NaYF4 lattice was investigated by high-resolution time-resolved luminescence measurements. Two major Eu3+ species (bulk and surface) were found. This was supported by steady-state as well as time-resolved luminescence data. Based on the luminescence decay kinetics, the intermixing of lanthanides during synthesis of core- shell UCNPs was evaluated. The energy transfer between Eu3+ (donor) and Nd3+ (acceptor) ions was exploited to quantify the motion of the dopant ions. This investigation reveals the migration of Ln(3+) ions between different compatiments in core-shell NCs and affects the concept of using core-shell architectures to increase the efficiency of UCNPs. In order to obtain well-separated core and shell structures with different dopants, alternative concepts are needed. Y1 - 2020 U6 - https://doi.org/10.1021/acs.jpcc.0c02588 SN - 1932-7447 SN - 1932-7455 VL - 124 IS - 20 SP - 11229 EP - 11238 PB - American Chemical Society CY - Washington, DC ER -