TY - JOUR A1 - Yuan, Jiayin A1 - ten Brummelhuis, Niels A1 - Junginger, Mathias A1 - Xie, Zailai A1 - Lu, Yan A1 - Taubert, Andreas A1 - Schlaad, Helmut T1 - Diversified applications of chemically modified 1,2-Polybutadiene JF - Macromolecular rapid communications N2 - Commercially available 1,2-PB was transformed into a well-defined reactive intermediate by quantitative bromination. The brominated polymer was used as a polyfunctional macroinitiator for the cationic ring-opening polymerization of 2-ethyl-2-oxazoline to yield a water-soluble brush polymer. Nucleophilic substitution of bromide by 1-methyl imidazole resulted in the formation of polyelectrolyte copolymers consisting of mixed units of imidazolium, bromo, and double bond. These copolymers, which were soluble in water without forming aggregates, were used as stabilizers in the heterophase polymerization of styrene and were also studied for their ionic conducting properties. KW - emulsion polymerization KW - polybutadiene KW - polyelectrolytes KW - polymer modification KW - ring-opening polymerization Y1 - 2011 U6 - https://doi.org/10.1002/marc.201100254 SN - 1022-1336 VL - 32 IS - 15 SP - 1157 EP - 1162 PB - Wiley-Blackwell CY - Malden ER - TY - JOUR A1 - Yang, Guang A1 - Ding, Hong-ming A1 - Kochovski, Zdravko A1 - Hu, Rongting A1 - Lu, Yan A1 - Ma, Yu-qiang A1 - Chen, Guosong A1 - Jiang, Ming T1 - Highly Ordered Self-Assembly of Native Proteins into 1D, 2D, and 3D Structures Modulated by the Tether Length of Assembly-Inducing Ligands JF - Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition N2 - In nature, proteins self-assemble into various structures with different dimensions. To construct these nanostructures in laboratories, normally proteins with different symmetries are selected. However, most of these approaches are engineering-intensive and highly dependent on the accuracy of the protein design. Herein, we report that a simple native protein LecA assembles into one-dimensional nanoribbons and nanowires, two-dimensional nanosheets, and three-dimensional layered structures controlled mainly by small-molecule assembly-inducing ligands RnG (n = 1, 2, 3, 4, 5) with varying numbers of ethylene oxide repeating units. To understand the formation mechanism of the different morphologies controlled by the small-molecule structure, molecular simulations were performed from microscopic and mesoscopic view, which presented a clear relationship between the molecular structure of the ligands and the assembled patterns. These results introduce an easy strategy to control the assembly structure and dimension, which could shed light on controlled protein assembly. KW - carbohydrate-protein interactions KW - dual non-covalent interactions KW - molecular simulations KW - protein self-assembly Y1 - 2017 U6 - https://doi.org/10.1002/anie.201703052 SN - 1433-7851 SN - 1521-3773 VL - 56 SP - 10691 EP - 10695 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Sung, Jian-Ke A1 - Kochovski, Zdravko A1 - Zhang, Wei-Yi A1 - Kirmse, Holm A1 - Lu, Yan A1 - Antonietti, Markus A1 - Yuan, Jiayin T1 - General Synthetic Route toward Highly Dispersed Metal Clusters Enabled by Poly(ionic liquid)s JF - Journal of the American Chemical Society N2 - The ability to synthesize a broad spectrum of metal clusters (MCs) with their size controllable on a subnanometer scale presents an enticing prospect for exploring nanosize-dependent properties. Here we report an innovative design of a capping agent from a polytriazolium poly(ionic liquid) (PIL) in a vesicular form in solution that allows for crafting a variety of MCs including transition metals, noble metals, and their bimetallic alloy with precisely controlled sizes (similar to 1 nm) and record-high catalytic performance. The ultrastrong stabilization power is a result of an unusual synergy between the conventional binding sites in the heterocyclic cations in PIL and an in situ generated polycarbene structure induced simultaneously to the reduction reaction. Y1 - 2017 U6 - https://doi.org/10.1021/jacs.7b03357 SN - 0002-7863 VL - 139 SP - 8971 EP - 8976 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Mei, Shilin A1 - Jafta, Charl J. A1 - Lauermann, Iver A1 - Ran, Qidi A1 - Kaergell, Martin A1 - Ballauff, Matthias A1 - Lu, Yan T1 - Porous Ti4O7 Particles with Interconnected-Pore Structure as a High-Efficiency Polysulfide Mediator for Lithium-Sulfur Batteries JF - Advanced functional materials N2 - Multifunctional Ti4O7 particles with interconnected-pore structure are designed and synthesized using porous poly(styrene-b-2-vinylpyridine) particles as a template. The particles can work efficiently as a sulfur-host material for lithium-sulfur batteries. Specifically, the well-defined porous Ti4O7 particles exhibit interconnected pores in the interior and have a high-surface area of 592 m(2) g(-1); this shows the advantage of mesopores for encapsulating of sulfur and provides a polar surface for chemical binding with polysulfides to suppress their dissolution. Moreover, in order to improve the conductivity of the electrode, a thin layer of carbon is coated on the Ti4O7 surface without destroying its porous structure. The porous Ti4O7 and carbon-coated Ti4O7 particles show significantly improved electrochemical performances as cathode materials for Li-S batteries as compared with those of TiO2 particles. KW - lithium-sulfur batteries KW - porous particles KW - poly(styrene-b-2-vinylpyridine) (PS-P2VP) KW - Ti4O7 Y1 - 2017 U6 - https://doi.org/10.1002/adfm.201701176 SN - 1616-301X SN - 1616-3028 VL - 27 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Sun, Fu A1 - Osenberg, Markus A1 - Dong, Kang A1 - Zhou, Dong A1 - Hilger, Andre A1 - Jafta, Charl J. A1 - Risse, Sebastian A1 - Lu, Yan A1 - Markoetter, Henning A1 - Manke, Ingo T1 - Correlating Morphological Evolution of Li Electrodes with Degrading Electrochemical Performance of Li/LiCoO2 and Li/S Battery Systems BT - Investigated by Synchrotron X-ray Phase Contrast Tomography JF - ACS energy letters / American Chemical Society N2 - Efficient Li utilization is generally considered to be a prerequisite for developing next-generation energy storage systems (ESSs). However, uncontrolled growth of Li microstructures (LmSs) during electrochemical cycling has prevented its practical commercialization. Herein, we attempt to understand the correlation of morphological evolution of Li electrodes with degrading electrochemical performances of Li/LiCoO2 and Li/S systems by synchrotron X-ray phase contrast tomography technique. It was found that the continuous transformation of the initial dense Li bulk to a porous lithium interface (PL1) structure intimately correlates with the gradually degrading overall cell performance of these two systems. Additionally, the formation mechanism of the PLI and its correlation with previously reported inwardly growing LmS and the lithium-reacted region have been intensively discussed. The information that we gain herein is complementary to previous investigations and may provide general insights into understanding of degradation mechanisms of Li metal anodes and also provide highly needed guidelines for effective design of reliable next-generation Li metal-based ESSs. Y1 - 2018 U6 - https://doi.org/10.1021/acsenergylett.7b01254 SN - 2380-8195 VL - 3 IS - 2 SP - 356 EP - 365 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Xu, Xiao A1 - Angioletti-Uberti, Stefano A1 - Lu, Yan A1 - Dzubiella, Joachim A1 - Ballauff, Matthias T1 - Interaction of Proteins with Polyelectrolytes BT - Comparison of Theory to Experiment JF - Langmuir N2 - We discuss recent investigations of the interaction of polyelectrolytes with proteins. In particular, we review our recent studies on the interaction of simple proteins such as human serum albumin (HSA) and lysozyme with linear polyelectrolytes, charged dendrimers, charged networks, and polyelectrolyte brushes. In all cases discussed here, we combined experimental work with molecular dynamics (MD) simulations and mean-field theories. In particular, isothermal titration calorimetry (ITC) has been employed to obtain the respective binding constants K-b and the Gibbs free energy of binding. MD simulations with explicit counterions but implicit water demonstrate that counterion release is the main driving force for the binding of proteins to strongly charged polyelectrolytes: patches of positive charges located on the surface of the protein become multivalent counterions of the polyelectrolyte, thereby releasing a number of counterions condensed on the polyelectrolyte. The binding Gibbs free energy due to counterion release is predicted to scale with the logarithm of the salt concentration in the system, which is verified by both simulations and experiment. In several cases, namely, for the interaction of proteins with linear polyelectrolytes and highly charged hydrophilic dendrimers, the binding constant could be calculated from simulations to very good approximation. This finding demonstrated that in these cases explicit hydration effects do not contribute to the Gibbs free energy of binding. The Gibbs free energy can also be used to predict the kinetics of protein uptake by microgels for a given system by applying dynamic density functional theory. The entire discussion demonstrates that the direct comparison of theory with experiments can lead to a full understanding of the interaction of proteins with charged polymers. Possible implications for applications, such as drug design, are discussed. Y1 - 2018 U6 - https://doi.org/10.1021/acs.langmuir.8b01802 SN - 0743-7463 VL - 35 IS - 16 SP - 5373 EP - 5391 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Sun, Fu A1 - Dong, Kang A1 - Osenberg, Markus A1 - Hilger, Andre A1 - Risse, Sebastian A1 - Lu, Yan A1 - Kamm, Paul H. A1 - Klaus, Manuela A1 - Markoetter, Henning A1 - Garcia-Moreno, Francisco A1 - Arlt, Tobias A1 - Manke, Ingo T1 - Visualizing the morphological and compositional evolution of the interface of InLi-anode|thio-LISION electrolyte in an all-solid-state Li-S cell by in operando synchrotron X-ray tomography and energy dispersive diffraction JF - Journal of materials chemistry : A, Materials for energy and sustainability N2 - Dynamic and direct visualization of interfacial evolution is helpful in gaining fundamental knowledge of all-solid-state-lithium battery working/degradation mechanisms and clarifying future research directions for constructing next-generation batteries. Herein, in situ and in operando synchrotron X-ray tomography and energy dispersive diffraction were simultaneously employed to record the morphological and compositional evolution of the interface of InLi-anode|sulfide-solid-electrolyte during battery cycling. Compelling morphological evidence of interfacial degradation during all-solid-state-lithium battery operation has been directly visualized by tomographic measurement. The accompanying energy dispersive diffraction results agree well with the observed morphological deterioration and the recorded electrochemical performance. It is concluded from the current investigation that a fundamental understanding of the phenomena occurring at the solid-solid electrode|electrolyte interface during all-solid-state-lithium battery cycling is critical for future progress in cell performance improvement and may determine its final commercial viability. Y1 - 2018 U6 - https://doi.org/10.1039/c8ta08821g SN - 2050-7488 SN - 2050-7496 VL - 6 IS - 45 SP - 22489 EP - 22496 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Zivanovic, Vesna A1 - Kochovski, Zdravko A1 - Arenz, Christoph A1 - Lu, Yan A1 - Kneipp, Janina T1 - SERS and Cryo-EM Directly Reveal Different Liposome Structures during Interaction with Gold Nanoparticles JF - The journal of physical chemistry letters N2 - The combination of gold nanoparticles with liposomes is important for nano- and biotechnology. Here, we present direct, label-free characterization of liposome structure and composition at the site of its interaction with citrate-stabilized gold nanoparticles by surface-enhanced Raman scattering (SERS) and cryogenic electron microscopy (cryo-EM). Evidenced by the vibrational spectra and cryo-EM, the gold nanoparticles destroy the bilayer structure of interacting liposomes in the presence of a high amount of citrate, while at lower citrate concentration the nanoparticles interact with the surface of the intact liposomes. The spectra of phosphatidylcholine and phosphatidylcholine/sphingomyelin liposomes show that at the site of interaction the lipid chains are in the gel phase. The SERS spectra indicate that cholesterol has strong effects on the contacts of the vesicles with the nanoparticles. By combining cryo-EM and SERS, the structure and properties of lipid nanoparticle composites could be tailored for the development of drug delivery systems. Y1 - 2018 U6 - https://doi.org/10.1021/acs.jpclett.8b03191 SN - 1948-7185 VL - 9 IS - 23 SP - 6767 EP - 6772 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Qi, Wenjing A1 - Zhang, Yufei A1 - Kochovski, Zdravko A1 - Wang, Jue A1 - Lu, Yan A1 - Chen, Guosong A1 - Jiang, Ming T1 - Self-assembly of Human Galectin-1 via dual supramolecular interactions and its inhibition of T-cell agglutination and apoptosis JF - Nano Research N2 - Recently, we proposed a new strategy to construct artificial plant protein assemblies, which were induced by adding a small molecule, based on dual supramolecular interactions. In this paper, we further explored this method by employing Human Galectin-1 (Gal-1) as a building block to form self-assembled microribbons. Two non-covalent interactions, including lactose-lectin binding and dimerization of Rhodamine B (RhB), induced by the small molecule ligand addition, were involved in the crosslinking of the animal protein, resulting in the formation of assemblies. By using transmission electron microscopy (TEM), cryo-electron microscopy (cryo-EM), and three-dimensional (3D) tomographic analysis, we arrived at a possible mechanistic model for the microribbon formation. Furthermore, the morphology of protein assemblies could be fine-timed by varying the incubation time, the protein/ligand ratio, and the chemical structures of ligands. Interestingly, the formation of protein microribbons successfully inhibited Gal-1 induced T-cell agglutination and apoptosis. This is because the multivalent and dynamic interactions in protein assemblies compete with the binding between Gal-1 and the glycans on cell surfaces, which suppresses the function of Gal-1 in promotion of tumor progression and metastasis. KW - protein self-assembly KW - supramolecular interactions KW - galectin KW - cell agglutination Y1 - 2018 U6 - https://doi.org/10.1007/s12274-018-2169-7 SN - 1998-0124 SN - 1998-0000 VL - 11 IS - 10 SP - 5566 EP - 5572 PB - Tsinghua Univ Press CY - Beijing ER - TY - JOUR A1 - Jia, He A1 - Gao, Haitao A1 - Mei, Shilin A1 - Kneer, Janosch A1 - Lin, Xianzhong A1 - Ran, Qidi A1 - Wang, Fuxian A1 - Palzer, Stefan A1 - Lu, Yan T1 - Cu2O@PNIPAM core-shell microgels as novel inkjet materials for the preparation of CuO hollow porous nanocubes gas sensing layers JF - Journal of materials chemistry : C, Materials for optical and electronic devices N2 - There has been long-standing interest in developing metal oxide-based sensors with high sensitivity, selectivity, fast response and low material consumption. Here we report for the first time the utilization of Cu2O@PNIPAM core-shell microgels with a nanocube-shaped core structure for construction of novel CuO gas sensing layers. The hybrid microgels show significant improvement in colloidal stability as compared to native Cu2O nanocubes. Consequently, a homogeneous thin film of Cu2O@PNIPAM nanoparticles can be engineered in a quite low solid content (1.5 wt%) by inkjet printing of the dispersion at an optimized viscosity and surface tension. Most importantly, thermal treatment of the Cu2O@PNIPAM microgels forms porous CuO nanocubes, which show much faster response to relevant trace NO2 gases than sensors produced from bare Cu2O nanocubes. This outcome is due to the fact that the PNIPAM shell can successfully hinder the aggregation of CuO nanoparticles during pyrolysis, which enables full utilization of the sensor layers and better access of the gas to active sites. These results point out great potential of such an innovative system as gas sensors with low cost, fast response and high sensitivity. Y1 - 2018 U6 - https://doi.org/10.1039/c8tc01995a SN - 2050-7526 SN - 2050-7534 VL - 6 IS - 27 SP - 7249 EP - 7256 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Yang, Guang A1 - Hu, Rongting A1 - Ding, Hong-ming A1 - Kochovski, Zdravko A1 - Mei, Shilin A1 - Lu, Yan A1 - Ma, Yu-qiang A1 - Chen, Guosong A1 - Jiang, Ming T1 - CO2-switchable response of protein microtubules BT - behaviour and mechanism JF - Materials chemistry frontiers N2 - Recently, we proposed a small molecular inducing ligand strategy to assemble proteins into highly-ordered structures via dual non-covalent interactions, i.e. carbohydrate-protein interaction and dimerization of Rhodamine B. Using this approach, artificial protein microtubules were successfully constructed. In this study, we find that these microtubules exhibit a perfect CO2 responsiveness; assembly and disassembly of these microtubules were nicely controlled by the alternative passage of CO2 and N-2. Upon the injection of CO2, a negative net-charged SBA turns into a neutral or positive net-charged SBA, which elongated, to some extent, the effective distance between SBA and Rhodamine B, resulting in the disassociation of the Rhodamine B dimer. Further experimental and simulation results reveal that the CO2-responsive mechanism differs from that of solubility change of the previously reported CO2-responsive synthetic materials. Y1 - 2018 U6 - https://doi.org/10.1039/c8qm00245b SN - 2052-1537 VL - 2 IS - 9 SP - 1642 EP - 1646 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Yang, Guang A1 - Zheng, Wei A1 - Tao, Guoqing A1 - Wu, Libin A1 - Zhou, Qi-Feng A1 - Kochovski, Zdravko A1 - Ji, Tan A1 - Chen, Huaijun A1 - Li, Xiaopeng A1 - Lu, Yan A1 - Ding, Hong-ming A1 - Yang, Hai-Bo A1 - Chen, Guosong A1 - Jiang, Ming T1 - Diversiform and Transformable Glyco-Nanostructures Constructed from Amphiphilic Supramolecular Metallocarbohydrates through Hierarchical Self-Assembly: The Balance between Metallacycles and Saccharides JF - ACS nano N2 - During the past decade, self-assembly of saccharide-containing amphiphilic molecules toward bioinspired functional glycomaterials has attracted continuous attention due to their various applications in fundamental and practical areas. However, it still remains a great challenge to prepare hierarchical glycoassemblies with controllable and diversiform structures because of the complexity of saccharide structures and carbohydrate-carbohydrate interactions. Herein, through hierarchical self-assembly of modulated amphiphilic supramolecular metallocarbohydrates, we successfully prepared various well-defined glyco-nanostructures in aqueous solution, including vesicles, solid spheres, and opened vesicles depending on the molecular structures of metallocarbohydrates. More attractively, these glyco-nanostructures can further transform into other morphological structures in aqueous solutions such as worm-like micelles, tubules, and even tupanvirus-like vesicles (TVVs). It is worth mentioning that distinctive anisotropic structures including the opened vesicles (OVs) and TVVs were rarely reported in glycobased nano-objects. This intriguing diversity was mainly controlled by the subtle structural trade-off of the two major components of the amphiphiles, i.e., the saccharides and metallacycles. To further understand this precise structural control, molecular simulations provided deep physical insights on the morphology evolution and balancing of the contributions from saccharides and metallacycles. Moreover, the multivalency of glyco-nanostructures with different shapes and sizes was demonstrated by agglutination with a diversity of sugarbinding protein receptors such as the plant lectins Concanavalin A (ConA). This modular synthesis strategy provides access to systematic tuning of molecular structure and self-assembled architecture, which undoubtedly will broaden our horizons on the controllable fabrication of biomimetic glycomaterials such as biological membranes and supramolecular lectin inhibitors. KW - glycomaterials KW - diversiform structures KW - hierarchical self-assembly KW - metallocarbohydrates KW - anisotropic structures Y1 - 2019 U6 - https://doi.org/10.1021/acsnano.9b07134 SN - 1936-0851 SN - 1936-086X VL - 13 IS - 11 SP - 13474 EP - 13485 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Al Nakeeb, Noah A1 - Kochovski, Zdravko A1 - Li, Tingting A1 - Zhang, Youjia A1 - Lu, Yan A1 - Schmidt, Bernhard V. K. J. T1 - Poly(ethylene glycol) brush-b-poly(N-vinylpyrrolidone)-based double hydrophilic block copolymer particles crosslinked via crystalline alpha-cyclodextrin domains JF - RSC Advances N2 - Self-assembly of block copolymers is a significant area of polymer science. The self-assembly of completely water-soluble block copolymers is of particular interest, albeit a challenging task. In the present work the self-assembly of a linear-brush architecture block copolymer, namely poly(N-vinylpyrrolidone)-b-poly(oligoethylene glycol methacrylate) (PVP-b-POEGMA), in water is studied. Moreover, the assembled structures are crosslinked via alpha-CD host/guest complexation in a supramolecular way. The crosslinking shifts the equilibrium toward aggregate formation without switching off the dynamic equilibrium of double hydrophilic block copolymer (DHBC). As a consequence, the self-assembly efficiency is improved without extinguishing the unique DHBC self-assembly behavior. In addition, decrosslinking could be induced without a change in concentration by adding a competing complexation agent for alpha-CD. The self-assembly behavior was followed by DLS measurement, while the presence of the particles could be observed via cryo-TEM before and after crosslinking. Y1 - 2019 U6 - https://doi.org/10.1039/c8ra10672j SN - 2046-2069 VL - 9 IS - 9 SP - 4993 EP - 5001 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Khodeir, Miriam A1 - Ernould, Bruno A1 - Brassinne, Jeremy A1 - Ghiassinejad, Sina A1 - Jia, He A1 - Antoun, Sayed A1 - Friebe, Christian A1 - Schubert, Ulrich S. A1 - Kochovski, Zdravko A1 - Lu, Yan A1 - Van Ruymbeke, Evelyne A1 - Gohy, Jean-Francois T1 - Synthesis and characterisation of redox hydrogels based on stable nitroxide radicals JF - Soft matter N2 - The principle of encapsulation/release of a guest molecule from stimuli responsive hydrogels (SRHs) is mainly realised with pH, temperature or light stimuli. However, only a limited number of redox responsive hydrogels have been investigated so far. We report here the development of a SRH that can release its guest molecule upon a redox stimulus. To obtain this redox hydrogel, we have introduced into the hydrogel the 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) stable nitroxide radical, which can be reversibly oxidized into an oxoammonium cation (TEMPO+). Water solubility is provided by the presence of the (oligoethyleneglycol)methacrylate (OEGMA) comonomer. Electrochemical and mechanical characterization showed that those gels exhibit interesting physicochemical properties, making them very promising candidates for practical use in a wide range of applications. Y1 - 2019 U6 - https://doi.org/10.1039/c9sm00905a SN - 1744-683X SN - 1744-6848 VL - 15 IS - 31 SP - 6418 EP - 6426 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Zhang, Su-Yun A1 - Kochovski, Zdravko A1 - Lee, Hui-Chun A1 - Lu, Yan A1 - Zhang, Hemin A1 - Zhang, Jie A1 - Sun, Jian-Ke A1 - Yuan, Jiayin T1 - Ionic organic cage-encapsulating phase-transferable metal clusters JF - Chemical science N2 - Exploration of metal clusters (MCs) adaptive to both aqueous and oil phases without disturbing their size is promising for a broad scope of applications. The state-of-the-art approach via ligand-binding may perturb MCs' size due to varied metal–ligand binding strength when shuttling between solvents of different polarity. Herein, we applied physical confinement of a series of small noble MCs (<1 nm) inside ionic organic cages (I-Cages), which by means of anion exchange enables reversible transfer of MCs between aqueous and hydrophobic solutions without varying their ultrasmall size. Moreover, the MCs@I-Cage hybrid serves as a recyclable, reaction-switchable catalyst featuring high activity in liquid-phase NH3BH3 (AB) hydrolysis reaction with a turnover frequency (TOF) of 115 min−1. Y1 - 2019 U6 - https://doi.org/10.1039/c8sc04375b SN - 2041-6520 SN - 2041-6539 VL - 10 IS - 5 SP - 1450 EP - 1456 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Walkowiak, Jacek A1 - Lu, Yan A1 - Gradzielski, Michael A1 - Zauscher, Stefan A1 - Ballauff, Matthias T1 - Thermodynamic analysis of the uptake of a protein in a spherical polyelectrolyte brush JF - Macromolecular rapid communications N2 - A thermodynamic study of the adsorption of Human Serum Albumin (HSA) onto spherical polyelectrolyte brushes (SPBs) by isothermal titration calorimetry (ITC) is presented. The SPBs are composed of a solid polystyrene core bearing long chains of poly(acrylic acid). ITC measurements done at different temperatures and ionic strengths lead to a full set of thermodynamicbinding constants together with the enthalpies and entropies of binding. The adsorption of HSA onto SPBs is described with a two-step model. The free energy of binding Delta Gb depends only weakly on temperature because of a marked compensation of enthalpy by entropy. Studies of the adsorbed HSA by Fourier transform infrared spectroscopy (FT-IR) demonstrate no significant disturbance in the secondary structure of the protein. The quantitative analysis demonstrates that counterion release is the major driving force for adsorption in a process where proteins become multivalent counterions of the polyelectrolyte chains upon adsorption. A comparison with the analysis of other sets of data related to the binding of HSA to polyelectrolytes demonstrates that the cancellation of enthalpy and entropy is a general phenomenon that always accompanies the binding of proteins to polyelectrolytes dominated by counterion release. KW - Spherical polyelectrolyte brushes KW - proteins KW - ITC KW - thermodynamics KW - enthalpy-entropy compensation (EEC) Y1 - 2019 U6 - https://doi.org/10.1002/marc.201900421 SN - 1022-1336 SN - 1521-3927 VL - 41 IS - 1 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Gu, Sasa A1 - Risse, Sebastian A1 - Lu, Yan A1 - Ballauff, Matthias T1 - Mechanism of the oxidation of 3,3′,5,5′-tetramethylbenzidine catalyzed by peroxidase-like Pt nanoparticles immobilized in spherical polyelectrolyte brushes BT - a kinetic study JF - ChemPhysChem N2 - Experimental and kinetic modelling studies are presented to investigate the mechanism of 3,3 ',5,5 '-tetramethylbenzidine (TMB) oxidation by hydrogen peroxide (H2O2) catalyzed by peroxidase-like Pt nanoparticles immobilized in spherical polyelectrolyte brushes (SPB-Pt). Due to the high stability of SPB-Pt colloidal, this reaction can be monitored precisely in situ by UV/VIS spectroscopy. The time-dependent concentration of the blue-colored oxidation product of TMB expressed by different kinetic models was used to simulate the experimental data by a genetic fitting algorithm. After falsifying the models with abundant experimental data, it is found that both H2O2 and TMB adsorb on the surface of Pt nanoparticles to react, indicating that the reaction follows the Langmuir-Hinshelwood mechanism. A true rate constant k, characterizing the rate-determining step of the reaction and which is independent on the amount of catalysts used, is obtained for the first time. Furthermore, it is found that the product adsorbes strongly on the surface of nanoparticles, thus inhibiting the reaction. The entire analysis provides a new perspective to study the catalytic mechanism and evaluate the catalytic activity of the peroxidase-like nanoparticles. KW - kinetics KW - nanoparticles KW - reaction mechanisms KW - spherical polyelectrolyte KW - brushes KW - UV KW - vis spectroscopy Y1 - 2019 U6 - https://doi.org/10.1002/cphc.201901087 SN - 1439-4235 SN - 1439-7641 VL - 21 IS - 5 SP - 450 EP - 458 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Jia, He A1 - Quan, Ting A1 - Liu, Xuelian A1 - Bai, Lu A1 - Wang, Jiande A1 - Boujioui, Fadoi A1 - Ye, Ran A1 - Vald, Alexandru A1 - Lu, Yan A1 - Gohy, Jean-Francois T1 - Core-shell nanostructured organic redox polymer cathodes with superior performance JF - Nano Energy N2 - Core-shell nanoparticles stabilized by a cationic surfactant are prepared from the poly(2,2,6,6-tetra-methylpiperidinyloxy-4-yl methacrylate) redox polymer. The nanoparticles are further self-assembled with negatively charged reduced graphene oxide nanosheets and negatively charged mull-walled carbon nanotubes. This results in the formation of a free-standing cathode with a layered nanostructure and a high content of redox polymer that exhibits 100% utilization of the active substance with a measured capacity as high as 105 mAh/g based on the whole weight of the electrode. KW - Nanostructured KW - Redox polymer KW - Organic electrode KW - Lithium ion battery KW - Energy storage Y1 - 2019 U6 - https://doi.org/10.1016/j.nanoen.2019.103949 SN - 2211-2855 SN - 2211-3282 VL - 64 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Quan, Ting A1 - Goubard-Bretesche, Nicolas A1 - Haerk, Eneli A1 - Kochovski, Zdravko A1 - Mei, Shilin A1 - Pinna, Nicola A1 - Ballauff, Matthias A1 - Lu, Yan T1 - Highly Dispersible Hexagonal Carbon-MoS2-Carbon Nanoplates with Hollow Sandwich Structures for Supercapacitors JF - Chemistry - a European journal N2 - MoS2, a typical layered transition-metal dichalcogenide, is promising as an electrode material in supercapacitors. However, its low electrical conductivity could lead to limited capacitance if applied in electrochemical devices. Herein, a new nanostructure composed of hollow carbon-MoS2-carbon was successfully synthesized through an L-cysteine-assisted hydrothermal method by using gibbsite as a template and polydopamine as a carbon precursor. After calcination and etching of the gibbsite template, uniform hollow platelets, which were made of a sandwich-like assembly of partial graphitic carbon and two-dimensional layered MoS2 flakes, were obtained. The platelets showed excellent dispersibility and stability in water, and good electrical conductivity due to carbon provided by the calcination of polydopamine coatings. The hollow nanoplate morphology of the material provided a high specific surface area of 543 m(2) g(-1), a total pore volume of 0.677 cm(3) g(-1), and fairly small mesopores (approximate to 5.3 nm). The material was applied in a symmetric supercapacitor and exhibited a specific capacitance of 248 F g(-1) (0.12 F cm(-2)) at a constant current density of 0.1 Ag-1; thus suggesting that hollow carbon-MoS2 carbon nanoplates are promising candidate materials for supercapacitors. KW - carbon KW - chalcogens KW - electrochemistry KW - nanostructures KW - supercapacitors Y1 - 2019 U6 - https://doi.org/10.1002/chem.201806060 SN - 0947-6539 SN - 1521-3765 VL - 25 IS - 18 SP - 4757 EP - 4766 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Jia, He A1 - Friebe, Christian A1 - Schubert, Ulrich S. A1 - Zhang, Xiaozhe A1 - Quan, Ting A1 - Lu, Yan A1 - Gohy, Jean-Francois T1 - Core-Shell Nanoparticles with a Redox Polymer Core and a Silica Porous Shell as High-Performance Cathode Material for Lithium-Ion Batteries JF - Energy technology : generation, conversion, storage, distribution N2 - A facile and novel method for the fabrication of core-shell nanoparticles (PTMA@SiO2) based on a poly(2,2,6,6-tetramethylpiperidinyloxy-4-yl methacrylate) (PTMA) core and a porous SiO2 shell is reported. The core-shell nanoparticles are further self-assembled with negatively charged multi-walled carbon nanotubes (MWCNTs), which results in the formation of a free-standing cathode electrode. The porous SiO2 shell not only effectively improves the stability of the linear PTMA redox polymer with low molar mass in organic electrolytes but also leads to the uniform dispersion of PTMA active units in the MWCNTs conductive network. The PTMA@SiO2@MWCNT composite electrode exhibits a specific capacity as high as 73.8 mAh g at 1 C and only 0.11% capacity loss per cycle at a rate of 2 C. KW - composite electrodes KW - core-shell nanoparticles KW - energy storage KW - lithium-ion batteries KW - redox polymers Y1 - 2019 U6 - https://doi.org/10.1002/ente.201901040 SN - 2194-4288 SN - 2194-4296 VL - 8 IS - 3 PB - Wiley-VCH CY - Weinheim ER -