TY - JOUR A1 - Ziolkowski, Bartosz A1 - Bleek, Katrin A1 - Twamley, Brendan A1 - Fraser, Kevin J. A1 - Byrne, Robert A1 - Diamond, Dermot A1 - Taubert, Andreas T1 - Magnetic ionogels (MagIGs) based on iron oxide nanoparticles, poly(N-isopropylacrylamide), and the ionic liquid trihexyl(tetradecyl)phosphonium dicyanamide JF - European journal of inorganic chemistry : a journal of ChemPubSoc Europe N2 - Magnetic ionogels (MagIGs) were prepared from organosilane-coated iron oxide nanoparticles, N-isopropylacrylamide, and the ionic liquid trihexyl(tetradecyl)phosphonium dicyanamide. The ionogels prepared with the silane-modified nanoparticles are more homogeneous than ionogels prepared with unmodified magnetite particles. The silane-modified particles are immobilized in the ionogel and are resistant tonanoparticle leaching. The modified particles also render the ionogels mechanically more stable than the ionogels synthesized with unmodified nanoparticles. The ionogels respond to external permanent magnets and are therefore prototypes of a new soft magnetic actuator. KW - Magnetic properties KW - Nanotechnology KW - Iron KW - Ionic liquids KW - Ionogels Y1 - 2012 U6 - https://doi.org/10.1002/ejic.201200597 SN - 1434-1948 IS - 32 SP - 5245 EP - 5251 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Mai, Tobias A1 - Rakhmatullina, Ekaterina A1 - Bleek, Katrin A1 - Boye, Susanne A1 - Yuan, Jiayin A1 - Voelkel, Antje A1 - Graewert, Marlies A1 - Cheaib, Zeinab A1 - Eick, Sigrun A1 - Günter, Christina A1 - Lederer, Albena A1 - Lussi, Adrian A1 - Taubert, Andreas T1 - Poly(ethylene oxide)-b-poly(3-sulfopropyl methacrylate) block copolymers for calcium phosphate mineralization and biofilm inhibition JF - Biomacromolecules : an interdisciplinary journal focused at the interface of polymer science and the biological sciences N2 - Poly(ethylene oxide) (PEO) has long been used as an additive in toothpaste, partly because it reduces biofilm formation on teeth. It does not, however, reduce the formation of dental calculus or support the remineralization of dental enamel or dentine. The present article describes the synthesis of new block copolymers on the basis of PEO and poly(3-sulfopropyl methacrylate) blocks using atom transfer radical polymerization. The polymers have very large molecular weights (over 10(6) g/mol) and are highly water-soluble. They delay the precipitation of calcium phosphate from aqueous solution but, upon precipitation, lead to relatively monodisperse hydroxyapatite (HAP) spheres. Moreover, the polymers inhibit the bacterial colonization of human enamel by Streptococcus gordonii, a pioneer bacterium in oral biofilm formation, in vitro. The formation of well-defined HAP spheres suggests that a polymer-induced liquid precursor phase could be involved in the precipitation process. Moreover, the inhibition of bacterial adhesion suggests that the polymers could be utilized in caries prevention. Y1 - 2014 U6 - https://doi.org/10.1021/bm500888q SN - 1525-7797 SN - 1526-4602 VL - 15 IS - 11 SP - 3901 EP - 3914 PB - American Chemical Society CY - Washington ER -