TY - JOUR A1 - Zöller, Gert A1 - Holschneider, Matthias T1 - The Earthquake History in a Fault Zone Tells Us Almost Nothing about m(max) JF - Seismological research letters N2 - In the present study, we summarize and evaluate the endeavors from recent years to estimate the maximum possible earthquake magnitude m(max) from observed data. In particular, we use basic and physically motivated assumptions to identify best cases and worst cases in terms of lowest and highest degree of uncertainty of m(max). In a general framework, we demonstrate that earthquake data and earthquake proxy data recorded in a fault zone provide almost no information about m(max) unless reliable and homogeneous data of a long time interval, including several earthquakes with magnitude close to m(max), are available. Even if detailed earthquake information from some centuries including historic and paleoearthquakes are given, only very few, namely the largest events, will contribute at all to the estimation of m(max), and this results in unacceptably high uncertainties. As a consequence, estimators of m(max) in a fault zone, which are based solely on earthquake-related information from this region, have to be dismissed. Y1 - 2016 U6 - https://doi.org/10.1785/0220150176 SN - 0895-0695 SN - 1938-2057 VL - 87 SP - 132 EP - 137 PB - Seismological Society of America CY - Albany ER - TY - JOUR A1 - Schroeter, M-A A1 - Ritter, M. A1 - Holschneider, Matthias A1 - Sturm, H. T1 - Enhanced DySEM imaging of cantilever motion using artificial structures patterned by focused ion beam techniques JF - Journal of micromechanics and microengineering N2 - We use a dynamic scanning electron microscope (DySEM) to map the spatial distribution of the vibration of a cantilever beam. The DySEM measurements are based on variations of the local secondary electron signal within the imaging electron beam diameter during an oscillation period of the cantilever. For this reason, the surface of a cantilever without topography or material variation does not allow any conclusions about the spatial distribution of vibration due to a lack of dynamic contrast. In order to overcome this limitation, artificial structures were added at defined positions on the cantilever surface using focused ion beam lithography patterning. The DySEM signal of such high-contrast structures is strongly improved, hence information about the surface vibration becomes accessible. Simulations of images of the vibrating cantilever have also been performed. The results of the simulation are in good agreement with the experimental images. KW - FIB patterning KW - structured cantilever KW - AFM KW - modal analysis KW - DySEM Y1 - 2016 U6 - https://doi.org/10.1088/0960-1317/26/3/035010 SN - 0960-1317 SN - 1361-6439 VL - 26 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Bärenzung, Julien A1 - Holschneider, Matthias A1 - Lesur, Vincent T1 - constraints JF - Journal of geophysical research : Solid earth N2 - Prior information in ill-posed inverse problem is of critical importance because it is conditioning the posterior solution and its associated variability. The problem of determining the flow evolving at the Earth's core-mantle boundary through magnetic field models derived from satellite or observatory data is no exception to the rule. This study aims to estimate what information can be extracted on the velocity field at the core-mantle boundary, when the frozen flux equation is inverted under very weakly informative, but realistic, prior constraints. Instead of imposing a converging spectrum to the flow, we simply assume that its poloidal and toroidal energy spectra are characterized by power laws. The parameters of the spectra, namely, their magnitudes, and slopes are unknown. The connection between the velocity field, its spectra parameters, and the magnetic field model is established through the Bayesian formulation of the problem. Working in two steps, we determined the time-averaged spectra of the flow within the 2001–2009.5 period, as well as the flow itself and its associated uncertainties in 2005.0. According to the spectra we obtained, we can conclude that the large-scale approximation of the velocity field is not an appropriate assumption within the time window we considered. For the flow itself, we show that although it is dominated by its equatorial symmetric component, it is very unlikely to be perfectly symmetric. We also demonstrate that its geostrophic state is questioned in different locations of the outer core. Y1 - 2016 U6 - https://doi.org/10.1002/2015JB012464 SN - 2169-9313 SN - 2169-9356 VL - 121 SP - 1343 EP - 1364 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Holschneider, Matthias A1 - Lesur, Vincent A1 - Mauerberger, Stefan A1 - Baerenzung, Julien T1 - Correlation-based modeling and separation of geomagnetic field components JF - Journal of geophysical research : Solid earth N2 - We introduce a technique for the modeling and separation of geomagnetic field components that is based on an analysis of their correlation structures alone. The inversion is based on a Bayesian formulation, which allows the computation of uncertainties. The technique allows the incorporation of complex measurement geometries like observatory data in a simple way. We show how our technique is linked to other well-known inversion techniques. A case study based on observational data is given. Y1 - 2016 U6 - https://doi.org/10.1002/2015JB012629 SN - 2169-9313 SN - 2169-9356 VL - 121 SP - 3142 EP - 3160 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Zöller, Gert A1 - Holschneider, Matthias T1 - The Maximum Possible and the Maximum Expected Earthquake Magnitude for Production-Induced Earthquakes at the Gas Field in Groningen, The Netherlands JF - Bulletin of the Seismological Society of America N2 - The Groningen gas field serves as a natural laboratory for production-induced earthquakes, because no earthquakes were observed before the beginning of gas production. Increasing gas production rates resulted in growing earthquake activity and eventually in the occurrence of the 2012M(w) 3.6 Huizinge earthquake. At least since this event, a detailed seismic hazard and risk assessment including estimation of the maximum earthquake magnitude is considered to be necessary to decide on the future gas production. In this short note, we first apply state-of-the-art methods of mathematical statistics to derive confidence intervals for the maximum possible earthquake magnitude m(max). Second, we calculate the maximum expected magnitude M-T in the time between 2016 and 2024 for three assumed gas-production scenarios. Using broadly accepted physical assumptions and 90% confidence level, we suggest a value of m(max) 4.4, whereas M-T varies between 3.9 and 4.3, depending on the production scenario. Y1 - 2016 U6 - https://doi.org/10.1785/0120160220 SN - 0037-1106 SN - 1943-3573 VL - 106 SP - 2917 EP - 2921 PB - Seismological Society of America CY - Albany ER -