TY - GEN A1 - Wilske, Burkhard A1 - Eccard, Jana A1 - Zistl-Schlingmann, Marcus A1 - Hohmann, Maximilian A1 - Methler, Annabel A1 - Herde, Antje A1 - Liesenjohann, Thilo A1 - Dannenmann, Michael A1 - Butterbach-Bahl, Klaus A1 - Breuer, Lutz T1 - Effects of short term bioturbation by common voles on biogeochemical soil variables T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Bioturbation contributes to soil formation and ecosystem functioning. With respect to the active transport of matter by voles, bioturbation may be considered as a very dynamic process among those shaping soil formation and biogeochemistry. The present study aimed at characterizing and quantifying the effects of bioturbation by voles on soil water relations and carbon and nitrogen stocks. Bioturbation effects were examined based on a field set up in a luvic arenosol comprising of eight 50 x 50 m enclosures with greatly different numbers of common vole (Microtus arvalis L., ca. 35-150 individuals ha(-1) mth(-1)). Eleven key soil variables were analyzed: bulk density, infiltration rate, saturated hydraulic conductivity, water holding capacity, contents of soil organic carbon (SOC) and total nitrogen (N), CO2 emission potential, C/N ratio, the stable isotopic signatures of C-13 and N-15, and pH. The highest vole densities were hypothesized to cause significant changes in some variables within 21 months. Results showed that land history had still a major influence, as eight key variables displayed an additional or sole influence of topography. However, the delta N-15 at depths of 10-20 and 20-30 cm decreased and increased with increasing vole numbers, respectively. Also the CO2 emission potential from soil collected at a depth of 15-30 cm decreased and the C/N ratio at 5-10 cm depth narrowed with increasing vole numbers. These variables indicated the first influence of voles on the respective mineralization processes in some soil layers. Tendencies of vole activity homogenizing SOC and N contents across layers were not significant. The results of the other seven key variables did not confirm significant effects of voles. Thus overall, we found mainly a first response of variables that are indicative for changes in biogeochemical dynamics but not yet of those representing changes in pools. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 499 KW - small mammalian herbivores KW - Microtus agrestis KW - pocket gophers KW - field voles KW - ecosystem services KW - functional traits KW - organic-carbon KW - nitrogen KW - population KW - landscape Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-408375 SN - 1866-8372 IS - 499 ER - TY - JOUR A1 - Allan, Eric A1 - Manning, Pete A1 - Alt, Fabian A1 - Binkenstein, Julia A1 - Blaser, Stefan A1 - Blüthgen, Nico A1 - Böhm, Stefan A1 - Grassein, Fabrice A1 - Hölzel, Norbert A1 - Klaus, Valentin H. A1 - Kleinebecker, Till A1 - Morris, E. Kathryn A1 - Oelmann, Yvonne A1 - Prati, Daniel A1 - Renner, Swen C. A1 - Rillig, Matthias C. A1 - Schaefer, Martin A1 - Schloter, Michael A1 - Schmitt, Barbara A1 - Schöning, Ingo A1 - Schrumpf, Marion A1 - Solly, Emily A1 - Sorkau, Elisabeth A1 - Steckel, Juliane A1 - Steffen-Dewenter, Ingolf A1 - Stempfhuber, Barbara A1 - Tschapka, Marco A1 - Weiner, Christiane N. A1 - Weisser, Wolfgang W. A1 - Werner, Michael A1 - Westphal, Catrin A1 - Wilcke, Wolfgang A1 - Fischer, Markus T1 - Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition JF - Ecology letters N2 - Global change, especially land-use intensification, affects human well-being by impacting the delivery of multiple ecosystem services (multifunctionality). However, whether biodiversity loss is a major component of global change effects on multifunctionality in real-world ecosystems, as in experimental ones, remains unclear. Therefore, we assessed biodiversity, functional composition and 14 ecosystem services on 150 agricultural grasslands differing in land-use intensity. We also introduce five multifunctionality measures in which ecosystem services were weighted according to realistic land-use objectives. We found that indirect land-use effects, i.e. those mediated by biodiversity loss and by changes to functional composition, were as strong as direct effects on average. Their strength varied with land-use objectives and regional context. Biodiversity loss explained indirect effects in a region of intermediate productivity and was most damaging when land-use objectives favoured supporting and cultural services. In contrast, functional composition shifts, towards fast-growing plant species, strongly increased provisioning services in more inherently unproductive grasslands. KW - Biodiversity-ecosystem functioning KW - ecosystem services KW - global change KW - land use KW - multifunctionality Y1 - 2015 U6 - https://doi.org/10.1111/ele.12469 SN - 1461-023X SN - 1461-0248 VL - 18 IS - 8 SP - 834 EP - 843 PB - Wiley-Blackwell CY - Hoboken ER -