TY - JOUR A1 - Bräuer, B. A1 - Asch, Günter A1 - Hofstetter, Rami A1 - Haberland, Christian A1 - Jaser, D. A1 - El-Kelani, R. A1 - Weber, Michael H. T1 - High-resolution local earthquake tomography of the southern Dead Sea area JF - Geophysical journal international N2 - Local earthquake data from a dense temporary seismological network in the southern Dead Sea area have been analysed within the project DESIRE (Dead Sea Integrated Research Project). Local earthquakes are used for the first precise image of the distribution of the P-wave velocity and the vP/vS ratios. 65 stations registered 655 local events within 18 months of observation time. A subset of 530 well-locatable events with 26 730 P- and S-arrival times was used to calculate a tomographic model for the vP and vP/vS distribution. Since the study area is at first-order 2-D, a gradual approach was chosen, which compromised a 2-D inversion followed by a 3-D inversion. The sedimentary basin fill is clearly imaged through high vP/vS ratios and low vP. The basin fill shows an asymmetric structure with average depth of 7 km at the western boundary and depth between 10 and 14 km at the eastern boundary. This asymmetry is reflected by the vertical strike-slip eastern border fault, and the normal faulting at the western boundary, caused by the transtensional deformation within the last 5 Myr. Within the basin fill the Lisan salt diapir is imaged through low vP/vS ratios, reflecting its low fluid content. The extensions were determined to 12 km in EW and 17 km in NS direction while its depth is 56 km. The thickness of the pre-basin sediments below the basin fill cannot be derived from the tomography datait is estimated to less than 3 km from former investigations. Below the basin, down to 18 km depth very low P-wave velocities and low vP/vS ratios are observedmost likely caused by fluids from the surrounding crust or the upper mantle. KW - Seismic tomography KW - Continental margins: transform KW - Continental tectonics: strike-slip and transform Y1 - 2012 U6 - https://doi.org/10.1111/j.1365-246X.2012.05668.x SN - 0956-540X VL - 191 IS - 3 SP - 881 EP - 897 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Muksin, Umar A1 - Haberland, Christian A1 - Bauer, Klaus A1 - Weber, Michael H. T1 - Three-dimensional upper crustal structure of the geothermal system in Tarutung (North Sumatra, Indonesia) revealed by seismic attenuation tomography JF - Geophysical journal international N2 - The geothermal potential in Tarutung is controlled by both the Sumatra Fault system and young arc volcanism. In this study we use the spatial distribution of seismic attenuation, calculated from local earthquake recordings, to image the 3-D seismic attenuation of the area and relate it with the temperature anomalies and the fluid distribution of the subsurface. A temporary seismic network of 42 stations was deployed around Tarutung and Sarulla (south of Tarutung) for a period of 10 months starting in 2011 May. Within this period, the network recorded 2586 local events. A high-quality subset of 229 events recorded by at least 10 stations was used for the attenuation inversion (tomography). Path-average attenuation (t(p)*) was calculated by using a spectral inversion method. The spread function, the contour lines of the model resolution matrix and the recovery test results show that our 3-D attenuation model (Q(p)) has good resolution around the Tarutung Basin and along the Sarulla graben. High attenuation (low Q(p)) related to the geothermal system is found in the northeast of the Tarutung Basin suggesting fluid pathways from below the Sumatra Fault. The upper part of the studied geothermal system in the Tarutung district seems to be mainly controlled by the fault structure rather than by magmatic activities. In the southwest of the Tarutung Basin, the high attenuation zone is associated with the Martimbang volcano. In the Sarulla region, a low-Q(p) anomaly is found along the graben within the vicinity of the Hopong caldera. KW - Seismicity and tectonics KW - Body waves KW - Seismic attenuation KW - Seismic tomography Y1 - 2013 U6 - https://doi.org/10.1093/gji/ggt383 SN - 0956-540X SN - 1365-246X VL - 195 IS - 3 SP - 2037 EP - 2049 PB - Oxford Univ. Press CY - Oxford ER -