TY - JOUR A1 - Tawfik, Ahmed Y. A1 - Ondrak, Robert A1 - Winterleitner, Gerd A1 - Mutti, Maria T1 - Source rock evaluation and petroleum system modeling of the East Beni Suef Basin, north Eastern Desert, Egypt JF - Journal of African earth sciences N2 - This study deals with the East Beni Suef Basin (Eastern Desert, Egypt) and aims to evaluate the source-generative potential, reconstruct the burial and thermal history, examine the most influential parameters on thermal maturity modeling, and improve on the models already published for the West Beni Suef to ultimately formulate a complete picture of the whole basin evolution. Source rock evaluation was carried out based on TOC, Rock-Eval pyrolysis, and visual kerogen petrography analyses. Three kerogen types (II, II/III, and III) are distinguished in the East Beni Suef Basin, where the Abu Roash "F" Member acts as the main source rock with good to excellent source potential, oil-prone mainly type II kerogen, and immature to marginal maturity levels. The burial history shows four depositional and erosional phases linked with the tectonic evolution of the basin. A hiatus (due to erosion or non-deposition) has occurred during the Late Eocene-Oligocene in the East Beni Suef Basin, while the West Beni Suef Basin has continued subsiding. Sedimentation began later (Middle to Late Albian) with lower rates in the East Beni Suef Basin compared with the West Beni Suef Basin (Early Albian). The Abu Roash "F" source rock exists in the early oil window with a present-day transformation ratio of about 19% and 21% in the East and West Beni Suef Basin, respectively, while the Lower Kharita source rock, which is only recorded in the West Beni Suef Basin, has reached the late oil window with a present-day transformation ratio of about 70%. The magnitude of erosion and heat flow have proportional and mutual effects on thermal maturity. We present three possible scenarios of basin modeling in the East Beni Suef Basin concerning the erosion from the Apollonia and Dabaa formations. Results of this work can serve as a basis for subsequent 2D and/or 3D basin modeling, which are highly recommended to further investigate the petroleum system evolution of the Beni Suef Basin. KW - source rock evaluation KW - Kerogen petrography KW - basin modeling KW - sensitivity KW - analysis KW - Beni Suef Basin KW - Egypt Y1 - 2022 U6 - https://doi.org/10.1016/j.jafrearsci.2022.104575 SN - 1464-343X SN - 1879-1956 VL - 193 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Tella, Timothy Oluwatobi A1 - Winterleitner, Gerd A1 - Mutti, Maria T1 - Investigating the role of differential biotic production on carbonate geometries through stratigraphic forward modelling and sensitivity analysis BT - the Llucmajor example JF - Petroleum geoscience N2 - The geometry of carbonate platforms reflects the interaction of several factors. However, the impact of carbonate-producing organisms has been poorly investigated so far. This study applies stratigraphic forward modelling (SFM) and sensitivity analysis to examine, referenced to the Miocene Llucmajor Platform, the effect of changes of dominant biotic production in the oligophotic and euphotic zones on platform geometry. Our results show that the complex interplay of carbonate production rates, bathymetry and variations in accommodation space control the platform geometry. The main driver of progradation is the oligophotic production of rhodalgal sediments during the lowstands. This study demonstrates that platform geometry and internal architecture varies significantly according to the interaction of the predominant carbonate-producing biotas. The input parameters for this study are based on well-understood Miocene carbonate biotas with characteristic euphotic, oligophotic and photo-independent carbonate production in which it is crucial that each carbonate-producing class is modelled explicitly within the simulation run and not averaged with a single carbonate production-depth profile. This is important in subsurface exploration studies based on stratigraphic forward models where the overall platform geometry may be approximated through calibration runs, and constrained by seismic surveys and wellbores. However, the internal architecture is likely to be oversimplified without an in-depth understanding of the target carbonate system and a transfer to forward modelling parameters. Y1 - 2022 U6 - https://doi.org/10.1144/petgeo2021-053 SN - 1354-0793 SN - 2041-496X VL - 28 IS - 2 PB - Geological Soc. Publ. House CY - Bath ER - TY - JOUR A1 - Christ, Nicolas A1 - Maerz, Sven A1 - Kutschera, Edgar A1 - Kwiecien, Ola A1 - Mutti, Maria T1 - Palaeoenvironmental and diagenetic reconstruction of a closed-lacustrine carbonate system BT - the challenging marginal setting of the Miocene Ries Crater Lake (Germany) JF - Sedimentology : the journal of the International Association of Sedimentologists N2 - Chemostratigraphic studies on lacustrine sedimentary sequences provide essential insights on past cyclic climatic events, on their repetition and prediction through time. Diagenetic overprint of primary features often hinders the use of such studies for palaeoenvironmental reconstruction. Here the potential of integrated geochemical and petrographic methods is evaluated to record freshwater to saline oscillations within the ancient marginal lacustrine carbonates of the Miocene Ries Crater Lake (Germany). This area is critical because it represents the transition from shoreline to proximal domains of a hydrologically closed system, affected by recurrent emergent events, representing the boundaries of successive sedimentary cycles. Chemostratigraphy targets shifts related to subaerial exposure and/or climatic fluctuations. Methods combine facies changes with C-13-O-18 chemostratigraphy from matrix carbonates across five closely spaced, temporally equivalent stratigraphic sections. Isotope composition of ostracod shells, gastropods and cements is provided for comparison. Cathodoluminescence and back-scatter electron microscopy were performed to discriminate primary (syn-)depositional, from secondary diagenetic features. Meteoric diagenesis is expressed by substantial early dissolution and dark blue luminescent sparry cements carrying negative C-13 and O-18. Sedimentary cycles are not correlated by isotope chemostratigraphy. Both matrix C-13 and O-18 range from ca -75 to +40 parts per thousand and show clear positive covariance (R=097) whose nature differs from that of previous basin-oriented studies on the lake: negative values are here unconnected to original freshwater lacustrine conditions but reflect extensive meteoric diagenesis, while positive values probably represent primary saline lake water chemistry. Noisy geochemical curves relate to heterogeneities in (primary) porosity, resulting in selective carbonate diagenesis. This study exemplifies that ancient lacustrine carbonates, despite extensive meteoric weathering, are able to retain key information for both palaeoenvironmental reconstruction and the understanding of diagenetic processes in relation to those primary conditions. Also, it emphasizes the limitation of chemostratigraphy in fossil carbonates, and specifically in settings that are sensitive for the preservation of primary environmental signals, such as lake margins prone to meteoric diagenesis. KW - Lacustrine carbonates KW - meteoric diagenesis KW - Miocene KW - ostracod shells KW - palaeoenvironmental reconstruction KW - sedimentary cycles KW - subaerial exposure KW - C-13 and O-18 chemostratigraphy Y1 - 2017 U6 - https://doi.org/10.1111/sed.12401 SN - 0037-0746 SN - 1365-3091 VL - 65 IS - 1 SP - 235 EP - 262 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Sayago, Jhosnella A1 - Di Lucia, Matteo A1 - Mutti, Maria A1 - Sitta, Andrea A1 - Cotti, Axum A1 - Frijia, Gianluca T1 - Late Paleozoic seismic sequence stratigraphy and paleogeography of the paleo-Loppa High in the Norwegian Barents Sea JF - Marine and petroleum geology N2 - The paleo-Loppa High in the SW Barents Sea is a ridge structure, which developed during the late Paleozoic when the earliest phase of the Atlantic rifting between Greenland and Norway occurred. The southwest of the Barents Sea, located at the northern margin of Pangaea during the Carboniferous and Permian, was characterized by a structural style of half-graben geometries. The northward drift of the northern Pangaea triggered changes in regional climatic conditions that are reflected in the preserved sedimentary deposits. 2D/3D seismic combined with well and core data were used to define depositional seismic sequences and to understand the stratigraphic evolution of the paleo-Loppa High during the late Paleozoic. Based on the geometry of the defined seismic sequences and the character of observed sedimentary facies, a paleogeographic reconstruction of the key stages in the paleo-Loppa High evolution is also proposed and discussed in relation to local tectonic, global sea-level oscillations, and climatic changes. A total of seven seismic sequences, ranging from clastic-dominated to transitional elastic-carbonate sedimentation followed by an evaporitic drawdown phase, then shifting to carbonate-dominated sequences and finally capped by silica- and chert-dominated deposits, have been defined and represent the infill evolution of the paleo-Loppa High. Tectonics processes associated with the rifting are the principal controls in the 3-D morphology of the defined sequences. Sea-level fluctuations and climate changes have modified the biotic evolution and were responsible of the small-scale features inside each sequence. A renewed interest, in the study of the late Paleozoic sedimentary deposits of the paleo-Loppa High, has been manifested due to the recent discoveries of hydrocarbons in the Gohta and Alta prospects. Y1 - 2018 U6 - https://doi.org/10.1016/j.marpetgeo.2018.05.038 SN - 0264-8172 SN - 1873-4073 VL - 97 SP - 192 EP - 208 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Wang, Xiaoxi A1 - Foster, William J. A1 - Yan, J. A1 - Li, A. A1 - Mutti, Maria T1 - Delayed recovery of metazoan reefs on the Laibin-Heshan platform margin following the Middle Permian (Capitanian) mass extinction JF - Global and planetary change N2 - Following the Middle Permian (Capitanian) mass extinction there was a global ‘reef eclipse’, and this event had an important role in the Paleozoic-Mesozoic transition of reef ecosystems. Furthermore, the recovery pattern of reef ecosystems in the Wuchiapingian of South China, before the radiation of Changhsingian reefs, is poorly understood. Here, we present a detailed sedimentological account of the Tieqiao section, South China, which records the only known Wuchiapingian reef setting from South China. Six reef growing phases were identified within six transgressive-regressive cycles. The cycles represent changes of deposition in a shallow basin to a subtidal outer platform setting, and the reefal build-ups are recorded in the shallowest part of the cycles above wave base in the euphotic zone. Our results show that the initial reef recovery started from the shallowing up part of the 1st cycle, within the Clarkina leveni conodont zone, which is two conodont zones earlier than previously recognized. In addition, even though metazoans, such as sponges, do become important in the development of the reef bodies, they are not a major component until later in the Wuchiapingian in the 5th and 6th transgressive-regressive cycles. This suggests a delayed recovery of metazoan reef ecosystems following the Middle Permian extinction. Furthermore, even though sponges do become abundant within the reefs, it is the presence and growth of the encrusters Archaeolithoporella and Tubiphytes and abundance of microbial micrites that play an important role in stabilizing the reef structures that form topographic highs. KW - Reefs KW - Mass extinction KW - Wuchiapingian KW - Archaeolithoporella KW - Permian Y1 - 2019 U6 - https://doi.org/10.1016/j.gloplacha.2019.05.005 SN - 0921-8181 SN - 1872-6364 VL - 180 SP - 1 EP - 15 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Tomás, Sara A1 - Aurell, Marcos A1 - Badenas, Beatriz A1 - Bjorge, Merle A1 - Duaso, Maria A1 - Mutti, Maria T1 - Architecture and Paleoenvironment of Mid-Jurassic Microbial–Siliceous Sponge Mounds, Northeastern Spain JF - Journal of sedimentary research N2 - The occurrence of mounds dominated by siliceous sponges and microbialites is often related to distal, deep settings of middle ramps and shelves. This paper presents evidence for Bajocian (Garanliana garantiana Zone) microbial-siliceous sponge mounds formed in open marine but relatively shallow settings of a ramp from the Iberian Basin of eastern Spain. Marked differences in mound spacing, morphology, and composition of the related intermound facies are observed from distal to more proximal settings. The distal (below storm wave base) settings are characterized by alternating tabular-bedded marls and limestones rich in pelagic fossils (ammonites, belemnites), open-marine thin-shelled bivalves (Bositra-like), as well as peloids, which include widely or randomly spaced isolated, small (up to 0.4 m high) and larger (up to 2.5 m high) mounds with upward accretion. The intermediate (near to above storm wave base) settings show tabular, thickened beds of peloidal and/or intraclastic limestones with closely spaced mounds (similar to 1 m high), which often coalesce laterally, forming extensive lenticular structures (up to 10 m wide). The proximal (above storm wave base) depositional settings consist of tabular to irregular beds of intraclastic limestones with widely spaced small (up to 0.4 m high) mounds with mainly tabular geometries. The mound framework contains variable proportions of microbialites (dense to clotted peloidal thrombolitic fabrics) and siliceous sponges (hexactinellids and lithistids in similar proportion) ranging from planar to conic shapes. These morphological and compositional changes allow characterizing three shallowing-upward sequences (sequences 1-3) developed in the overall regressive trend of a basin-wide, upper Bajocian T-R cycle. Episodic wave reworking of the early-cemented mounds resulted in the formation of peloids, small rounded intraclasts, and large, rounded or subangular intraclasts. These nonskeletal micritic grains show internal fabrics related to those of the mound and/or microbialites. A progressive textural gradation towards greater size and lesser roundness of the nonskeletal grains in the areas in the vicinity of the main mound factory is documented (i.e., from large, subangular intraclasts in the areas close to the main mound factory to peloids in the areas that are far from it). We discuss the alternative model of internal waves (instead of storm-induced waves) as the hydrodynamic agent providing the high-energy events needed to explain the origin of the peloidal-intraclastic intermound facies and, likely, also the nutrients needed by the microbialites and siliceous sponges to grow. Y1 - 2019 U6 - https://doi.org/10.2110/jsr.2019.5 SN - 1527-1404 SN - 1938-3681 VL - 89 IS - 2 SP - 110 EP - 134 PB - Society for Sedimentary Geology CY - Tulsa ER - TY - JOUR A1 - Eberli, Gregor P. A1 - Bernoulli, Daniel A1 - Vecsei, Adam A1 - Sekti, Rizky A1 - Grasmueck, Mark A1 - Lüdmann, Thomas A1 - Anselmetti, Flavio S. A1 - Mutti, Maria A1 - Della Porta, Giovanna T1 - A Cretaceous carbonate delta drift in the Montagna della Maiella, Italy JF - Sedimentology : the journal of the International Association of Sedimentologists N2 - The Upper Cretaceous (Campanian-Maastrichtian) bioclastic wedge of the Orfento Formation in the Montagna della Maiella, Italy, is compared to newly discovered contourite drifts in the Maldives. Like the drift deposits in the Maldives, the Orfento Formation fills a channel and builds a Miocene delta-shaped and mounded sedimentary body in the basin that is similar in size to the approximately 350 km(2) large coarse-grained bioclastic Miocene delta drifts in the Maldives. The composition of the bioclastic wedge of the Orfento Formation is also exclusively bioclastic debris sourced from the shallow-water areas and reworked clasts of the Orfento Formation itself. In the near mud-free succession, age-diagnostic fossils are sparse. The depositional textures vary from wackestone to float-rudstone and breccia/conglomerates, but rocks with grainstone and rudstone textures are the most common facies. In the channel, lensoid convex-upward breccias, cross-cutting channelized beds and thick grainstone lobes with abundant scours indicate alternating erosion and deposition from a high-energy current. In the basin, the mounded sedimentary body contains lobes with a divergent progradational geometry. The lobes are built by decametre thick composite megabeds consisting of sigmoidal clinoforms that typically have a channelized topset, a grainy foreset and a fine-grained bottomset with abundant irregular angular clasts. Up to 30 m thick channels filled with intraformational breccias and coarse grainstones pinch out downslope between the megabeds. In the distal portion of the wedge, stacked grainstone beds with foresets and reworked intraclasts document continuous sediment reworking and migration. The bioclastic wedge of the Orfento Formation has been variously interpreted as a succession of sea-level controlled slope deposits, a shoaling shoreface complex, or a carbonate tidal delta. Current-controlled delta drifts in the Maldives, however, offer a new interpretation because of their similarity in architecture and composition. These similarities include: (i) a feeder channel opening into the basin; (ii) an excavation moat at the exit of the channel; (iii) an overall mounded geometry with an apex that is in shallower water depth than the source channel; (iv) progradation of stacked lobes; (v) channels that pinch out in a basinward direction; and (vi) smaller channelized intervals that are arranged in a radial pattern. As a result, the Upper Cretaceous (Campanian-Maastrichtian) bioclastic wedge of the Orfento Formation in the Montagna della Maiella, Italy, is here interpreted as a carbonate delta drift. KW - Carbonate contourite drift KW - delta drift KW - Maiella Mountains KW - Orfento Formation KW - prograding lobes Y1 - 2019 U6 - https://doi.org/10.1111/sed.12590 SN - 0037-0746 SN - 1365-3091 VL - 66 IS - 4 SP - 1266 EP - 1301 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Frijia, Gianluca A1 - Forkner, R. A1 - Minisini, D. A1 - Pacton, M. A1 - Struck, Ulrich A1 - Mutti, Maria T1 - Cyanobacteria proliferation in the cenomanian-turonian boundary interval of the apennine carbonate platform: BT - immediate response to the environmental perturbations associated with OAE-2? JF - Geochemistry, geophysics, geosystems N2 - Oceanic Anoxic Event-2 (OAE-2; Cenomanian-Turonian) is characterized by extensive deposition of organic carbon-rich deposits (black shales) in ocean basins worldwide as result of a major perturbation of the global carbon cycle. While the sedimentological, geochemical, and paleontological aspects of deep water expressions of OAE-2 have been intensively studied in the last few decades, much less attention has been given to the coeval shallow water deposits. In this study, we present the results of a detailed facies and petrographic (optical microscope and scanning electron microscopy) and geochemical studies (delta C-13(carb), delta C-13 (org), delta N-15(bulk), TOC, and Rock-Eval pyrolysis) on two key shallow marine sections from the Apennine Carbonate Platform (ACP; Italy). Here a continuous record of shallow water carbonates through the OAE-2 interval is preserved, offering the unique opportunity to document the archive of paleoenvironmental changes in a neritic setting, at a tropical latitude and far from the influence of a large continental block. Two conspicuous intervals are characterized by abundant and closely spaced dark microbial laminites found at correlative stratigraphic horizons in the two stratigraphic sections. These laminites contain elevated concentrations of TOC (up to 1%) relative to microbial capping cycles laminites stratigraphically above and below. The organic matter preserved in these fine-grained laminites is dominated by cyanobacteria remains, which accounted for most of the organic matter produced on the ACP in these intervals. Our study suggests that Tethyan carbonate platforms experienced significant biological changes during OAE-2, alternating, in few kiloyears, between eutrophic phases dominated by microbial communities and mesotrophic/oligotrophic conditions favoring normal carbonate production/sedimentation. The synchronous occurrence of microbialite facies at different locations across the ACP and on other platforms worldwide (e.g., Mexico and Croatia) suggests a causal link between Large Igneous Province volcanism and the environmental conditions necessary to trigger cyanobacterial proliferation on shallow carbonate platforms. KW - OAE-2 KW - Apennine Carbonate Platform (ACP) KW - Cyanobacteria KW - C isotopes KW - N isotopes Y1 - 2019 U6 - https://doi.org/10.1029/2019GC008306 SN - 1525-2027 VL - 20 IS - 6 SP - 2698 EP - 2716 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Iryu, Yasufumi A1 - Matsuda, Hiroki A1 - Machiyama, Hideaki A1 - Piller, Werner E. A1 - Quinn, Terrence M. A1 - Mutti, Maria T1 - Introductory perspective on the COREF project JF - The island arc : official journal of the Geological Society of Japan N2 - Coral reefs are tropic to subtropic, coastal ecosystems comprising very diverse organisms. Late Quaternary reef deposits are fossil archives of environmental, tectonic and eustatic variations that can be used to reconstruct the paleoclimatic and paleoceano-graphic history of the tropic surface oceans. Reefs located at the latitudinal limits of coral-reef ecosystems (i.e. those at coral-reef fronts) are particularly sensitive to environmental changes-especially those associated with glacial-interglacial changes in climate and sealevel. We propose a land and ocean scientific drilling campaign in the Ryukyu Islands (the Ryukyus) in the northwestern Pacific Ocean to investigate the dynamic response of the corals and coral-reef ecosystems in this region to Late Quaternary climate and sealevel change. Such a drilling campaign, which we call the COREF (coral-reef front) Project, will allow the following three major questions to be evaluated: (i) What are the nature, magnitude and driving mechanisms of coral-reef front migration in the Ryukyus? (ii) What is the ecosystem response of coral reefs in the Ryukyus to Quaternary climate changes? (iii) What is the role of coral reefs in the global carbon cycle? Subsidiary objectives include (i) the timing of coral-reef initiation in the Ryukyus and its causes; (ii) the position of the Kuroshio current during glacial periods and its effects on coral-reef formation; and (iii) early carbonate diagenetic responses as a function of compounded variations in climate, eustacy and depositional mineralogies (subtropic aragonitic to warm-temperate calcitic). The geographic, climatic and oceanographic settings of the Ryukyu Islands provide an ideal natural laboratory to address each of these research questions. KW - coral KW - Integrated Ocean Drilling Program KW - International Continental Scientific Drilling Program KW - limestone KW - Quaternary KW - reef KW - Ryukyu Group KW - Ryukyu Islands KW - sealevel Y1 - 2006 U6 - https://doi.org/10.1111/j.1440-1738.2006.00537.x SN - 1038-4871 VL - 15 IS - 4 SP - 393 EP - 406 PB - Wiley-Blackwell CY - Oxford ER - TY - JOUR A1 - Tomas, Sara A1 - Frijia, Gianluca A1 - Boemelburg, Esther A1 - Zamagni, Jessica A1 - Perrin, Christine A1 - Mutti, Maria T1 - Evidence for seagrass meadows and their response to paleoenvironmental changes in the early Eocene (Jafnayn Formation, Wadi Bani Khalid, N Oman) JF - Sedimentary geology : international journal of applied and regional sedimentology N2 - The recognition and understanding of vegetated habitats in the fossil record are of crucial importance in order to investigate paleoecological responses and indirectly infer climate and sea-level changes. However, the low preservation potential of plants and macroalgae hampers a direct identification of these environments in the geological past. Here we present sedimentological and paleontological evidences as tool to identify the presence of different seagrass-vegetated environments in the shallow marine settings of the lower Eocene jafnayn platform of Oman and their responses to paleoenvironmental changes. The studied lower Eocene deposits consist of well bedded, nodular pacicstones dominated by encrusting acervulinid and alveolinid foraminifera passing upward to an alternance of packstones with echinoids and quartz grains and grainstones rich in Orbitolites, smaller miliolid foraminifera and quartz grains. The presence of seagrass is inferred by the occurrence of encrusting acervulinids and soritid Orbitolites, as well as by their test morphologies together with further sedimentological criteria. The clear shift observed in the faunal assemblages and sedimentary features may be related to a major reorganization of the carbonate system passing from a carbonate platform to a ramp-like platform with increased terrigenous sedimentation. Heterotroph tubular acervulinids and oligotroph alveolinids of the carbonate platform were replaced upward by more heterotroph organisms such as large, discoidal Orbitolites and smaller miliolids, most likely due to enhanced nutrient levels which would have led to a change of phytal substrate, from cylindrical-leaf dominated grasses into flat-leafed ones. (C) 2016 Elsevier B.V. All rights reserved. KW - Epiphytic foraminifera KW - Seagrasses KW - Paleoenvironment KW - Early Eocene KW - Oman Y1 - 2016 U6 - https://doi.org/10.1016/j.sedgeo.2016.05.016 SN - 0037-0738 SN - 1879-0968 VL - 341 SP - 189 EP - 202 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Zhang, Yanqiu A1 - Chen, Daizhao A1 - Zhou, Xiqiang A1 - Guo, Zenghui A1 - Wei, Wenwen A1 - Mutti, Maria T1 - Depositional facies and stratal cyclicity of dolomites in the Lower Qiulitag Group (Upper Cambrian) in northwestern Tarim Basin, NW China JF - Facies : an international journal of palaeontology, sedimentology, geology N2 - The Upper Cambrian Lower Qiulitag Group in the Tarim Basin, NW China, is overwhelmingly composed of cyclic dolomites. Based on extensive field investigations and facies analysis from four outcrop sections in the Bachu-Keping area, northwestern Tarim Basin, four main types of facies are recognized: open-marine subtidal, restricted shallow subtidal, intertidal, and supratidal facies, and these are further subdivided into ten lithofacies. In general, these facies are vertically arranged into shallowing-upward, metre-scale cycles. These cycles are commonly composed of a thin basal horizon reflecting abrupt deepening, and a thicker upper succession showing gradual shallowing upwards. Based on the vertical facies arrangements and changes across boundary surfaces, two types of cycle: peritidal and shallow subtidal cycle, are further identified. The peritidal cycles, predominating over the lower-middle Lower Qiulitag Group, commence with shallow subtidal to lower intertidal facies and are capped by inter-supratidal facies. In contrast, the shallow subtidal cycles, dominating the upper Lower Qiulitag Group, are capped by shallow-subtidal facies. Based on vertical lithofacies variations, cycle stacking patterns, and accommodation variations revealed by Fischer plots, six larger-scale third-order depositional sequences (Sq1-Sq6) are recognized. These sequences generally consist of a lower transgressive and an upper regressive systems tract. The transgressive tracts are dominated by thicker-than-average cycles, indicating an overall accommodation increase, whereas the regressive tracts are characterized by thinner-than-average peritidal cycles, indicating an overall accommodation decrease. The sequence boundaries are characterized by transitional zones of stacked thinner-than-average cycles, rather than by a single surface. These sequences can further be grouped into lower-order sequence sets: the lower and upper sequence sets. The lower sequence set, including Sq1-Sq3, is characterized by peritidal facies-dominated sequences and a progressive decrease in accommodation space, indicating a longer-term fall in sea level. In contrast, the upper sequence set (Sq4-Sq6) is characterized by subtidal facies-dominated sequences and a progressive increase in accommodation space, indicating a longer-term rise in sea level. KW - Dolomites KW - Facies KW - Stratal cyclicity KW - Sequences KW - Upper Cambrian KW - Tarim Basin KW - China Y1 - 2015 U6 - https://doi.org/10.1007/s10347-014-0417-1 SN - 0172-9179 SN - 1612-4820 VL - 61 IS - 1 PB - Springer CY - New York ER - TY - JOUR A1 - Frijia, Gianluca A1 - Parente, Mariano A1 - Di Lucia, Matteo A1 - Mutti, Maria T1 - Carbon and strontium isotope stratigraphy of the Upper Cretaceous (Cenomanian-Campanian) shallow-water carbonates of southern Italy: Chronostratigraphic calibration of larger foraminifera biostratigraphy JF - Cretaceous research N2 - Shallow-water carbonates are invaluable archives of past global change. They hold the record of how neritic biologic communities reacted to palaeoenvironmental changes. However, attempts to decipher these geological archives are often severely hampered by the low stratigraphic resolution attained by biostratigraphy. This is particularly the case for the Upper Cretaceous carbonate platforms of the central Tethyan realm: their biostratigraphy suffers from very low resolution and poor correlation with the standard biochronologic scales based on ammonites, planktic foraminifers and calcareous nannoplankton. In this paper we show how this problem can be tackled by integrating biostratigraphy with isotope stratigraphy. We present a detailed record of the benthic foraminiferal biostratigraphy and carbon and strontium isotope stratigraphy of three upper Cenomanian-middle Campanian sections belonging to the Apennine Carbonate Platform of southern Italy. For the upper Cenomanian-Turonian interval, the carbon isotope curves of the studied sections are easily correlated to the reference curve of the English Chalk. The correlation is facilitated by the matching of the prominent positive excursion corresponding to the Oceanic Anoxic Event 2. For the Coniacian-middle Campanian interval, the correlation is mainly based on strontium isotope stratigraphy. We use the Sr-87/Sr-86 ratios of the low-Mg calcite of well preserved rudist shells to obtain accurate chronostratigraphic ages for many levels of the three studied sections. The ages obtained by Sr isotope stratigraphy are then used to better constrain the matching of the carbon isotope curves. From the high-resolution chronostratigraphic age-model stablished by isotope stratigraphy, we derive the chronostratigraphic calibration of benthic foraminiferal biostratigraphic events. For the first time the benthic foraminiferal biozones of the Apennine Carbonate Platform can be accurately correlated to the standard ammonite biozonation. This result is of great relevance because the biostratigraphic schemes of other carbonate platforms in the central and southern Tethyan realm are largely based on the same biostratigraphic events. (C) 2014 Elsevier Ltd. All rights reserved. KW - Strontium isotope stratigraphy KW - Carbon isotope stratigraphy KW - Biostratigraphy KW - Larger foraminifera KW - Upper Cretaceous KW - Apennine Carbonate Platform KW - Southern Italy Y1 - 2015 U6 - https://doi.org/10.1016/j.cretres.2014.11.002 SN - 0195-6671 SN - 1095-998X VL - 53 SP - 110 EP - 139 PB - Elsevier CY - London ER - TY - JOUR A1 - Agada, S. A1 - Chen, F. A1 - Geiger, S. A1 - Toigulova, G. A1 - Agar, Susan M. A1 - Shekhar, R. A1 - Benson, Gregory S. A1 - Hehmeyer, O. A1 - Amour, Frédéric A1 - Mutti, Maria A1 - Christ, Nicolas A1 - Immenhauser, A. T1 - Numerical simulation of fluid-flow processes in a 3D high-resolution carbonate reservoir analogue JF - Petroleum geoscience N2 - A high-resolution three-dimensional (3D) outcrop model of a Jurassic carbonate ramp was used in order to perform a series of detailed and systematic flow simulations. The aim of this study was to test the impact of small- and large-scale geological features on reservoir performance and oil recovery. The digital outcrop model contains a wide range of sedimentological, diagenetic and structural features, including discontinuity surfaces, shoal bodies, mud mounds, oyster bioherms and fractures. Flow simulations are performed for numerical well testing and secondary oil recovery. Numerical well testing enables synthetic but systematic pressure responses to be generated for different geological features observed in the outcrops. This allows us to assess and rank the relative impact of specific geological features on reservoir performance. The outcome documents that, owing to the realistic representation of matrix heterogeneity, most diagenetic and structural features cannot be linked to a unique pressure signature. Instead, reservoir performance is controlled by subseismic faults and oyster bioherms acting as thief zones. Numerical simulations of secondary recovery processes reveal strong channelling of fluid flow into high-permeability layers as the primary control for oil recovery. However, appropriate reservoir-engineering solutions, such as optimizing well placement and injection fluid, can reduce channelling and increase oil recovery. Y1 - 2014 U6 - https://doi.org/10.1144/petgeo2012-096 SN - 1354-0793 VL - 20 IS - 1 SP - 125 EP - 142 PB - Geological Soc. Publ. House CY - Bath ER - TY - JOUR A1 - Shekhar, R. A1 - Sahni, I. A1 - Benson, Gregory S. A1 - Agar, Susan M. A1 - Amour, Frédéric A1 - Tomas, Sara A1 - Christ, Nicolas A1 - Alway, Robert A1 - Mutti, Maria A1 - Immenhauser, A. A1 - Karcz, Z. A1 - Kabiri, L. T1 - Modelling and simulation of a Jurassic carbonate ramp outcrop, Amellago, High Atlas Mountains, Morocco JF - Petroleum geoscience N2 - Carbonate reservoirs pose significant challenges for reservoir modelling and flow prediction due to heterogeneities in rock properties, limits to seismic resolution and limited constraints on subsurface data. Hence, a systematic and streamlined approach is needed to construct geological models and to quickly evaluate key sensitivities in the flow models. This paper discusses results from a reservoir analogue study of a Middle Jurassic carbonate ramp in the High Atlas Mountains of Morocco that has stratigraphic and structural similarities to selected Middle East reservoirs. For this purpose, high-resolution geological models were constructed from the integration of sedimentological, diagenetic and structural studies in the area. The models are approximately 1200 x 1250 m in size, and only faults (no fractures) with offsets greater than 1 m are included. Novel methods have been applied to test the response of flow simulations to the presence or absence of specific geological features, including proxies for hardgrounds, stylolites, patch reefs, and mollusc banks, as a way to guide the level of detail that is suitable for modelling objectives. Our general conclusion from the study is that the continuity of any geological feature with extreme permeability (high or low) has the most significant impact on flow. Y1 - 2014 U6 - https://doi.org/10.1144/petgeo2013-010 SN - 1354-0793 VL - 20 IS - 1 SP - 109 EP - 123 PB - Geological Soc. Publ. House CY - Bath ER - TY - JOUR A1 - Whitaker, F. F. A1 - Felce, G. P. A1 - Benson, Gregory S. A1 - Amour, Frédéric A1 - Mutti, Maria A1 - Smart, P. L. T1 - Simulating flow through forward sediment model stratigraphies: insights into climatic control of reservoir quality in isolated carbonate platforms JF - Petroleum geoscience N2 - Whilst sophisticated multiphase fluid flow models are routinely employed to understand behaviour of oil and gas reservoirs, high-resolution data describing the three-dimensional (3D) distribution of rock characteristics is rarely available to populate models. We present a new approach to developing a quantitative understanding of the effect of individual controls on the distribution of petrophysical properties and their impact on fluid flow. This involves simulating flow through high-detail permeability architectures generated by forward modelling of the coupled depositional-diagenetic evolution of isolated platforms using CARB3D(+). This workflow is exemplified by an investigation of interactions between subsidence and climate, and their expression in spatial variations in reservoir quality in an isolated carbonate platform of similar size and subsidence history to the Triassic Latemar Platform. Dissolutional lowering during subaerial exposure controls platform-top graininess via platform top hydrodynamics during the subsequent transgression. Dissolved carbonate is reprecipitated as cements by percolating meteoric waters. However, associated subsurface meteoric dissolution generates significant secondary porosity under a more humid climate. Slower subsidence enhances diagenetic overprinting during repeated exposure events. Single-phase streamline simulations show how early diagenesis develops more permeable fairways within the finer-grained condensed units that can act as thief zones for flow from the grainier but less diagenetically altered cyclic units. Y1 - 2014 U6 - https://doi.org/10.1144/petgeo2013-026 SN - 1354-0793 VL - 20 IS - 1 SP - 27 EP - 40 PB - Geological Soc. Publ. House CY - Bath ER - TY - JOUR A1 - Christ, Nicolas A1 - Immenhauser, Adrian A1 - Amour, Frederic A1 - Mutti, Maria A1 - Tomas, Sara A1 - Agar, Susan M. A1 - Alway, Robert A1 - Kabiri, Lahcen T1 - Characterization and interpretation of discontinuity surfaces in a Jurassic ramp setting (High Atlas, Morocco) JF - Sedimentology : the journal of the International Association of Sedimentologists N2 - Discontinuity surfaces are widely recognized but often poorly understood features of epeiric carbonate settings. In sedimentary systems, these features often represent hiatus surfaces below biostratigraphic resolution and may represent a considerable portion of the time contained in the sediment record. From an applied perspective, discontinuities may represent horizontal flow barriers and result in reservoir compartmentalization. Here, a total of 80 condensed surfaces (S1), firmgrounds (S2) and hardgrounds (S3) from a Jurassic (Middle and Upper Bajocian Assoul Formation) ramp setting of the High Atlas in Morocco are carefully documented with respect to their morphology, their secondary impregnation by Fe and Mn oxides and phosphates and their palaeoecological record. A statistical frequency distribution of two surfaces of the S1 type, 1.1 surfaces of the S2 type and 0.4 surfaces of the S3 type per 10 section metres is observed along a 220 m long carbonate succession. Based on two stratigraphically and spatially separated study windows and correlative sections, the stratigraphic frequency distribution, the lateral extent and the nature of facies change across discontinuities are documented in a quantitative manner. Specific features of the study site include the considerable stratigraphic thickness of the Assoul Formation and the conspicuous absence of subaerial-exposure-related features. Based on the data presented here, firmground and hardground surfaces are best interpreted as maximum-regression-related features. Relative sea-level lowstand results in a lowered wave base, and wave orbitals and currents result in sea floor omission and lithification. Care must be taken to avoid overly simplistic interpretations, as differences in bathymetry and carbonate facies result in marked changes in discontinuity characteristics in proximal-distal transects. The data shown here are of significance for those concerned with the interpretation of shoal water carbonate environments and are instrumental in the building of more realistic carbonate reservoir flow models. KW - Atlas Mountains KW - carbonate ramp KW - discontinuity surfaces KW - hardgrounds KW - hydrodynamic level KW - Jurassic KW - palaeoecology KW - relative sea-level Y1 - 2012 U6 - https://doi.org/10.1111/j.1365-3091.2011.01251.x SN - 0037-0746 VL - 59 IS - 1 SP - 249 EP - 290 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Di Lucia, Matteo A1 - Trecalli, A. A1 - Mutti, Maria A1 - Parente, Maria T1 - Bio-chemostratigraphy of the Barremian-Aptian shallow-water carbonates of the southern Apennines (Italy): pinpointing the OAE1a in a Tethyan carbonate platform JF - Solid earth N2 - Low biostratigraphic resolution and lack of chronostratigraphic calibration hinder precise correlations between platform carbonates and coeval deep-water successions. These are the main obstacle when studying the record of Mesozoic oceanic anoxic events in carbonate platforms. In this paper carbon and strontium isotope stratigraphy are used to produce the first chronostratigraphic calibration of the Barremian-Aptian biostratigraphy of the Apenninic carbonate platform of southern Italy. According to this calibration, the segment of decreasing delta C-13 values, leading to the negative peak that is generally taken as the onset of the Selli event, starts a few metres above the last occurrence of Palorbitolina lenticularis and Voloshinoides murgensis. The following rise of delta C-13 values, corresponding to the interval of enhanced accumulation of organic matter in deep-water sections, ends just below the first acme of Salpingoporella dinarica, which roughly corresponds to the segment of peak delta C-13 values. The whole carbon isotope excursion associated with the oceanic anoxic event 1a is bracketed in the Apenninic carbonate platform between the last occurrence of Voloshinoides murgensis and the "Orbitolina level", characterized by the association of Mesorbitolina parva and Mesorbitolina texana. Since these bioevents have been widely recognized beyond the Apenninic platform, the calibration presented in this paper can be used to pinpoint the interval corresponding to the Early Aptian oceanic anoxic event in other carbonate platforms of central and southern Tethys. This calibration will be particularly useful to interpret the record of the Selli event in carbonate platform sections for which a reliable carbon isotope stratigraphy is not available. Y1 - 2012 U6 - https://doi.org/10.5194/se-3-1-2012 SN - 1869-9510 VL - 3 IS - 1 SP - 1 EP - 28 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Zamagni, Jessica A1 - Mutti, Maria A1 - Kosir, Adrijan T1 - The evolution of mid paleocene-early eocene coral communities how to survive during rapid global warming JF - Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences N2 - Today, diverse communities of zooxanthellate corals thrive, but do not build reef, under a wide range of environmental conditions. In these settings they inhabit natural bottom communities, sometimes forming patch-reefs, coral carpets and knobs. Episodes in the fossil record, characterized by limited coral-reef development but widespread occurrence of coral-bearing carbonates, may represent the fossil analogs of these non-reef building, zooxanthellate coral communities. If so, the study of these corals could have valuable implications for paleoenvironmental reconstructions. Here we focus on the evolution of early Paleogene corals as a fossil example of coral communities mainly composed by zooxanthellate corals (or likely zooxanthellate), commonly occurring within carbonate biofacies and with relatively high diversity but with a limited bioconstructional potential as testified by the reduced record of coral reefs. We correlate changes of bioconstructional potential and community compositions of these fossil corals with the main ecological/environmental conditions at that time. The early Paleogene greenhouse climate was characterized by relatively short pulses of warming with the most prominent occurring at the Paleocene-Eocene boundary (PETM event), associated with high weathering rates, nutrient fluxes, and pCO(2) levels. A synthesis of coral occurrences integrated with our data from the Adriatic Carbonate Platform (SW Slovenia) and the Minervois region (SW France), provides evidence for temporal changes in the reef-building capacity of corals associated with a shift in community composition toward forms adapted to tolerate deteriorating sea-water conditions. During the middle Paleocene coral-algal patch reefs and barrier reefs occurred from shallow-water settings, locally with reef-crest structures. A first shift can be traced from middle Paleocene to late Paleocene, with small coral-algal patch reefs and coral-bearing mounds development in shallow to intermediate water depths. In these mounds corals were highly subordinated as bioconstructors to other groups tolerant to higher levels of trophic resources (calcareous red algae, encrusting foraminifera, microbes, and sponges). A second shift occurred at the onset of the early Eocene with a further reduction of coral framework-building capacity. These coral communities mainly formed knobs in shallow-water, turbid settings associated with abundant foraminiferal deposits. We suggest that environmental conditions other than high temperature determined a combination of interrelated stressors that limited the coral-reef construction. A continuous enhancement of sediment load/nutrients combined with geochemical changes of ocean waters likely displaced corals as the main bioconstructors during the late Paleocene-early Eocene times. Nonetheless, these conditions did not affect the capacity of some corals to colonize the substrate, maintain biodiversity, and act as locally important carbonate-sediment producers, suggesting broad environmental tolerance limits of various species of corals. The implications of this study include clues as to how both ancient and modern zooxanthellate corals could respond to changing climate. KW - Zooxanthellate corals KW - Early Paleogene KW - PETM KW - Nutrients KW - Ecological competition KW - Ocean acidification Y1 - 2012 U6 - https://doi.org/10.1016/j.palaeo.2011.12.010 SN - 0031-0182 VL - 317 IS - 2 SP - 48 EP - 65 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Amour, Frederic A1 - Mutti, Maria A1 - Christ, Nicolas A1 - Immenhauser, Adrian A1 - Agar, Susan M. A1 - Benson, Gregory S. A1 - Tomas, Sara A1 - Alway, Robert A1 - Kabiri, Lachen T1 - Capturing and modelling metre-scale spatial facies heterogeneity in a Jurassic ramp setting (Central High Atlas, Morocco) JF - Sedimentology : the journal of the International Association of Sedimentologists N2 - Each simulation algorithm, including Truncated Gaussian Simulation, Sequential Indicator Simulation and Indicator Kriging is characterized by different operating modes, which variably influence the facies proportion, distribution and association of digital outcrop models, as shown in clastic sediments. A detailed study of carbonate heterogeneity is then crucial to understanding these differences and providing rules for carbonate modelling. Through a continuous exposure of Bajocian carbonate strata, a study window (320 m long, 190 m wide and 30 m thick) was investigated and metre-scale lithofacies heterogeneity was captured and modelled using closely-spaced sections. Ten lithofacies, deposited in a shallow-water carbonate-dominated ramp, were recognized and their dimensions and associations were documented. Field data, including height sections, were georeferenced and input into the model. Four models were built in the present study. Model A used all sections and Truncated Gaussian Simulation during the stochastic simulation. For the three other models, Model B was generated using Truncated Gaussian Simulation as for Model A, Model C was generated using Sequential Indicator Simulation and Model D was generated using Indicator Kriging. These three additional models were built by removing two out of eight sections from data input. The removal of sections allows direct insights on geological uncertainties at inter-well spacings by comparing modelled and described sections. Other quantitative and qualitative comparisons were carried out between models to understand the advantages/disadvantages of each algorithm. Model A is used as the base case. Indicator Kriging (Model D) simplifies the facies distribution by assigning continuous geological bodies of the most abundant lithofacies to each zone. Sequential Indicator Simulation (Model C) is confident to conserve facies proportion when geological heterogeneity is complex. The use of trend with Truncated Gaussian Simulation is a powerful tool for modelling well-defined spatial facies relationships. However, in shallow-water carbonate, facies can coexist and their association can change through time and space. The present study shows that the scale of modelling (depositional environment or lithofacies) involves specific simulation constraints on shallow-water carbonate modelling methods. KW - 3D facies modelling KW - carbonate ramp KW - facies heterogeneity KW - Jurassic KW - modelling algorithms KW - scale Y1 - 2012 U6 - https://doi.org/10.1111/j.1365-3091.2011.01299.x SN - 0037-0746 VL - 59 IS - 4 SP - 1158 EP - 1189 PB - Wiley-Blackwell CY - Malden ER - TY - JOUR A1 - Frijia, Gianluca A1 - Di Lucia, Matteo A1 - Vicedo, Vicent A1 - Günter, Christina A1 - Ziemann, Martin Andreas A1 - Mutti, Maria T1 - An extraordinary single-celled architect A multi-technique study of the agglutinated shell of the larger foraminifer Mesorbitolina from the Lower Cretaceous of southern Italy JF - Marine micropaleontology N2 - Orbitolinids are larger foraminifera widespread in Lower Cretaceous shallow-water carbonates of the Tethyan realm. They are among the most important fossil groups used for Biostratigraphy. Despite this and although the structural features of the group have been described in detail, very little is known about the composition of their agglutinated test and the process by which they selected foreign grains. In this study, the test of Orbitolina d'Orbigny, 1850 (subgenus Mesorbitolina Schroeder, 1962) from Aptian shallow-water carbonate deposits of southern Italy has been studied in detail. We combine petrographic techniques (optical microscope and SEM) with energy-dispersive x-ray spectrometry (EDS), electron probe microanalyzer (EPMA), X-ray diffraction and Raman spectroscopy analyses. The results show that the test of Mesorbitolina is composed of carbonate and non-carbonate agglutinated grains with the latter distributed across the test with a specific pattern, moving from the marginal to the central zone. In the marginal zone, non-carbonate grains are found only in the epidermis and along the septa which are composed of quartz, with smaller amounts of illite/muscovite and K-feldspar grains. In the central zone of the test, non-carbonate grains are distributed in two ways. Coarse grains of quartz and K-feldspar are abundant and randomly placed in the endoskeleton embedded in a mosaic of minute carbonate grains. Flat grains, mainly of illite/muscovite constitute the external part of the septa. Our observations indicate that Mesorbitolina did select and place agglutinated grains across its test, mainly according to their shape, whereas it did not select particles according to grain size. The distribution of agglutinated particles according to their mineralogical composition shows some contradictory evidence and therefore, at the moment, grain selection in function of mineralogy cannot be completely confirmed or ruled out. Analogies in the test composition of Mesorbitolina specimens from coeval deposits from different areas of southern Italy indicate that the features of their agglutinated test are typical characters of the genus Mesorbitolina. However, it is still unclear what advantage was obtained by the foraminifer by the described test features. KW - Agglutinated foraminifera KW - Mesorbitolina KW - Shallow-water carbonates KW - Lower Cretaceous KW - Southern Italy Y1 - 2012 U6 - https://doi.org/10.1016/j.marmicro.2012.04.002 SN - 0377-8398 VL - 90-91 IS - 7 SP - 60 EP - 71 PB - Elsevier CY - Amsterdam ER -