TY - JOUR A1 - Matz, Timon W. A1 - Wang, Yang A1 - Kulshreshtha, Ritika A1 - Sampathkumar, Arun A1 - Nikoloski, Zoran T1 - Topological properties accurately predict cell division events and organization of shoot apical meristem in Arabidopsis thaliana JF - Development : Company of Biologists N2 - Cell division and the resulting changes to the cell organization affect the shape and functionality of all tissues. Thus, understanding the determinants of the tissue-wide changes imposed by cell division is a key question in developmental biology. Here, we use a network representation of live cell imaging data from shoot apical meristems (SAMs) in Arabidopsis thaliana to predict cell division events and their consequences at the tissue level. We show that a support vector machine classifier based on the SAM network properties is predictive of cell division events, with test accuracy of 76%, which matches that based on cell size alone. Furthermore, we demonstrate that the combination of topological and biological properties, including cell size, perimeter, distance and shared cell wall between cells, can further boost the prediction accuracy of resulting changes in topology triggered by cell division. Using our classifiers, we demonstrate the importance of microtubule-mediated cell-to-cell growth coordination in influencing tissue-level topology. Together, the results from our network-based analysis demonstrate a feedback mechanism between tissue topology and cell division in A. thaliana SAMs. KW - Arabidopsis thaliana KW - cell division KW - classification models KW - networks KW - shoot apical meristem KW - topology Y1 - 2022 U6 - https://doi.org/10.1242/dev.201024 SN - 0950-1991 SN - 1477-9129 VL - 149 IS - 16 PB - Company of Biologists CY - Cambridge ER - TY - JOUR A1 - Sedaghatmehr, Mastoureh A1 - Thirumalaikumar, Venkatesh P. A1 - Kamranfar, Iman A1 - Schulz, Karina A1 - Müller-Röber, Bernd A1 - Sampathkumar, Arun A1 - Balazadeh, Salma T1 - Autophagy complements metalloprotease FtsH6 in degrading plastid heat shock protein HSP21 during heat stress recovery JF - The journal of experimental botany : an official publication of the Society for Experimental Biology and of the Federation of European Societies of Plant Physiology N2 - Moderate and temporary heat stresses prime plants to tolerate, and survive, a subsequent severe heat stress. Such acquired thermotolerance can be maintained for several days under normal growth conditions, and can create a heat stress memory. We recently demonstrated that plastid-localized small heat shock protein 21 ( HSP21) is a key component of heat stress memory in Arabidopsis thaliana. A sustained high abundance of HSP21 during the heat stress recovery phase extends heat stress memory. The level of HSP21 is negatively controlled by plastid-localized metalloprotease FtsH6 during heat stress recovery. Here, we demonstrate that autophagy, a cellular recycling mechanism, exerts additional control over HSP21 degradation. Genetic and chemical disruption of both metalloprotease activity and autophagy trigger superior HSP21 accumulation, thereby improving memory. Furthermore, we provide evidence that autophagy cargo receptor ATG8-INTERACTING PROTEIN1 (ATI1) is associated with heat stress memory. ATI1 bodies co-localize with both autophagosomes and HSP21, and their abundance and transport to the vacuole increase during heat stress recovery. Together, our results provide new insights into the module for control of the regulation of heat stress memory, in which two distinct protein degradation pathways act in concert to degrade HSP21, thereby enabling cells to recover from the heat stress effect at the cost of reducing the heat stress memory. KW - Arabidopsis thaliana KW - ATI1 KW - FtsH6 KW - heat stress KW - HSP21 KW - plastid KW - selective autophagy KW - stress memory KW - stress recovery Y1 - 2021 U6 - https://doi.org/10.1093/jxb/erab304 SN - 0022-0957 SN - 1460-2431 VL - 72 IS - 21 SP - 7498 EP - 7513 PB - Oxford University Press CY - Oxford ER - TY - JOUR A1 - Kappel, Christian A1 - Friedrich, Thomas A1 - Oberkofler, Vicky A1 - Jiang, Li A1 - Crawford, Tim A1 - Lenhard, Michael A1 - Bäurle, Isabel T1 - Genomic and epigenomic determinants of heat stress-induced transcriptional memory in Arabidopsis JF - Genome biology : biology for the post-genomic era N2 - Background Transcriptional regulation is a key aspect of environmental stress responses. Heat stress induces transcriptional memory, i.e., sustained induction or enhanced re-induction of transcription, that allows plants to respond more efficiently to a recurrent HS. In light of more frequent temperature extremes due to climate change, improving heat tolerance in crop plants is an important breeding goal. However, not all heat stress-inducible genes show transcriptional memory, and it is unclear what distinguishes memory from non-memory genes. To address this issue and understand the genome and epigenome architecture of transcriptional memory after heat stress, we identify the global target genes of two key memory heat shock transcription factors, HSFA2 and HSFA3, using time course ChIP-seq. Results HSFA2 and HSFA3 show near identical binding patterns. In vitro and in vivo binding strength is highly correlated, indicating the importance of DNA sequence elements. In particular, genes with transcriptional memory are strongly enriched for a tripartite heat shock element, and are hallmarked by several features: low expression levels in the absence of heat stress, accessible chromatin environment, and heat stress-induced enrichment of H3K4 trimethylation. These results are confirmed by an orthogonal transcriptomic data set using both de novo clustering and an established definition of memory genes. Conclusions Our findings provide an integrated view of HSF-dependent transcriptional memory and shed light on its sequence and chromatin determinants, enabling the prediction and engineering of genes with transcriptional memory behavior. KW - Transcriptional memory KW - Priming KW - Heat stress KW - HSFA2 KW - HSFA3 KW - Arabidopsis thaliana KW - Histone H3K4 trimethylation KW - ChIP-seq Y1 - 2023 U6 - https://doi.org/10.1186/s13059-023-02970-5 SN - 1474-760X VL - 24 IS - 1 PB - BioMed Central CY - London ER - TY - JOUR A1 - Thirumalaikumar, Venkatesh P. A1 - Gorka, Michal A1 - Schulz, Karina A1 - Masclaux-Daubresse, Celine A1 - Sampathkumar, Arun A1 - Skirycz, Aleksandra A1 - Vierstra, Richard D. A1 - Balazadeh, Salma T1 - Selective autophagy regulates heat stress memory in Arabidopsis by NBR1-mediated targeting of HSP90.1 and ROF1 JF - Autophagy N2 - In nature, plants are constantly exposed to many transient, but recurring, stresses. Thus, to complete their life cycles, plants require a dynamic balance between capacities to recover following cessation of stress and maintenance of stress memory. Recently, we uncovered a new functional role for macroautophagy/autophagy in regulating recovery from heat stress (HS) and resetting cellular memory of HS inArabidopsis thaliana. Here, we demonstrated that NBR1 (next to BRCA1 gene 1) plays a crucial role as a receptor for selective autophagy during recovery from HS. Immunoblot analysis and confocal microscopy revealed that levels of the NBR1 protein, NBR1-labeled puncta, and NBR1 activity are all higher during the HS recovery phase than before. Co-immunoprecipitation analysis of proteins interacting with NBR1 and comparative proteomic analysis of annbr1-null mutant and wild-type plants identified 58 proteins as potential novel targets of NBR1. Cellular, biochemical and functional genetic studies confirmed that NBR1 interacts with HSP90.1 (heat shock protein 90.1) and ROF1 (rotamase FKBP 1), a member of the FKBP family, and mediates their degradation by autophagy, which represses the response to HS by attenuating the expression ofHSPgenes regulated by the HSFA2 transcription factor. Accordingly, loss-of-function mutation ofNBR1resulted in a stronger HS memory phenotype. Together, our results provide new insights into the mechanistic principles by which autophagy regulates plant response to recurrent HS. KW - Arabidopsis thaliana KW - heat stress KW - HSFA2 KW - HSP90.1 KW - NBR1 KW - ROF1 KW - selective autophagy KW - stress memory KW - stress recovery Y1 - 2020 U6 - https://doi.org/10.1080/15548627.2020.1820778 SN - 1554-8635 SN - 1554-8627 VL - 17 IS - 9 SP - 2184 EP - 2199 PB - Taylor & Francis CY - Abingdon ER - TY - JOUR A1 - Ralevski, Alexandra A1 - Apelt, Federico A1 - Olas, Justyna Jadwiga A1 - Müller-Röber, Bernd A1 - Rugarli, Elena I. A1 - Kragler, Friedrich A1 - Horvath, Tamas L. T1 - Plant mitochondrial FMT and its mammalian homolog CLUH controls development and behavior in Arabidopsis and locomotion in mice JF - Cellular and molecular life sciences N2 - Mitochondria in animals are associated with development, as well as physiological and pathological behaviors. Several conserved mitochondrial genes exist between plants and higher eukaryotes. Yet, the similarities in mitochondrial function between plant and animal species is poorly understood. Here, we show that FMT (FRIENDLY MITOCHONDRIA) from Arabidopsis thaliana, a highly conserved homolog of the mammalian CLUH (CLUSTERED MITOCHONDRIA) gene family encoding mitochondrial proteins associated with developmental alterations and adult physiological and pathological behaviors, affects whole plant morphology and development under both stressed and normal growth conditions. FMT was found to regulate mitochondrial morphology and dynamics, germination, and flowering time. It also affects leaf expansion growth, salt stress responses and hyponastic behavior, including changes in speed of hyponastic movements. Strikingly, Cluh(+/-) heterozygous knockout mice also displayed altered locomotive movements, traveling for shorter distances and had slower average and maximum speeds in the open field test. These observations indicate that homologous mitochondrial genes may play similar roles and affect homologous functions in both plants and animals. KW - Arabidopsis thaliana KW - Mitochondria KW - FMT KW - Hyponasty KW - Mice KW - CLUH; KW - Locomotion Y1 - 2022 U6 - https://doi.org/10.1007/s00018-022-04382-3 SN - 1420-682X SN - 1420-9071 VL - 79 IS - 6 PB - Springer International Publishing AG CY - Cham (ZG) ER - TY - JOUR A1 - Malinova, Irina A1 - Kössler, Stella A1 - Orawetz, Tom A1 - Matthes, Ulrike A1 - Orzechowski, Slawomir A1 - Koch, Anke A1 - Fettke, Jörg T1 - Identification of two Arabidopsis thaliana plasma membrane transporters able to transport glucose 1-phosphate JF - Plant & cell physiology N2 - Primary carbohydrate metabolism in plants includes several sugar and sugar-derivative transport processes. Over recent years, evidences have shown that in starch-related transport processes, in addition to glucose 6-phosphate, maltose, glucose and triose-phosphates, glucose 1-phosphate also plays a role and thereby increases the possible fluxes of sugar metabolites in planta. In this study, we report the characterization of two highly similar transporters, At1g34020 and At4g09810, in Arabidopsis thaliana, which allow the import of glucose 1-phosphate through the plasma membrane. Both transporters were expressed in yeast and were biochemically analyzed to reveal an antiport of glucose 1-phosphate/phosphate. Furthermore, we showed that the apoplast of Arabidopsis leaves contained glucose 1-phosphate and that the corresponding mutant of these transporters had higher glucose 1-phosphate amounts in the apoplast and alterations in starch and starch-related metabolism. KW - apoplast KW - Arabidopsis thaliana KW - glucose 1-phosphate transport KW - starch metabolism KW - sugar transport Y1 - 2020 U6 - https://doi.org/10.1093/pcp/pcz206 SN - 0032-0781 SN - 1471-9053 VL - 61 IS - 2 SP - 381 EP - 392 PB - Oxford University Press CY - Oxford ER - TY - JOUR A1 - Wang, Meng A1 - Li, Panpan A1 - Ma, Yao A1 - Nie, Xiang A1 - Grebe, Markus A1 - Men, Shuzhen T1 - Membrane sterol composition in Arabidopsis thaliana affects root elongation via auxin biosynthesis JF - International journal of molecular sciences N2 - Plant membrane sterol composition has been reported to affect growth and gravitropism via polar auxin transport and auxin signaling. However, as to whether sterols influence auxin biosynthesis has received little attention. Here, by using the sterol biosynthesis mutant cyclopropylsterol isomerase1-1 (cpi1-1) and sterol application, we reveal that cycloeucalenol, a CPI1 substrate, and sitosterol, an end-product of sterol biosynthesis, antagonistically affect auxin biosynthesis. The short root phenotype of cpi1-1 was associated with a markedly enhanced auxin response in the root tip. Both were neither suppressed by mutations in polar auxin transport (PAT) proteins nor by treatment with a PAT inhibitor and responded to an auxin signaling inhibitor. However, expression of several auxin biosynthesis genes TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS1 (TAA1) was upregulated in cpi1-1. Functionally, TAA1 mutation reduced the auxin response in cpi1-1 and partially rescued its short root phenotype. In support of this genetic evidence, application of cycloeucalenol upregulated expression of the auxin responsive reporter DR5:GUS (beta-glucuronidase) and of several auxin biosynthesis genes, while sitosterol repressed their expression. Hence, our combined genetic, pharmacological, and sterol application studies reveal a hitherto unexplored sterol-dependent modulation of auxin biosynthesis during Arabidopsis root elongation. KW - Arabidopsis thaliana KW - auxin KW - auxin biosynthesis KW - cycloeucalenol KW - CPI1 KW - sitosterol KW - sterol Y1 - 2021 U6 - https://doi.org/10.3390/ijms22010437 SN - 1422-0067 VL - 22 IS - 1 PB - MDPI CY - Basel ER - TY - JOUR A1 - Merida, Angel A1 - Fettke, Jörg T1 - Starch granule initiation in Arabidopsis thaliana chloroplasts JF - The plant journal N2 - The initiation of starch granule formation and the mechanism controlling the number of granules per plastid have been some of the most elusive aspects of starch metabolism. This review covers the advances made in the study of these processes. The analyses presented herein depict a scenario in which starch synthase isoform 4 (SS4) provides the elongating activity necessary for the initiation of starch granule formation. However, this protein does not act alone; other polypeptides are required for the initiation of an appropriate number of starch granules per chloroplast. The functions of this group of polypeptides include providing suitable substrates (maltooligosaccharides) to SS4, the localization of the starch initiation machinery to the thylakoid membranes, and facilitating the correct folding of SS4. The number of starch granules per chloroplast is tightly regulated and depends on the developmental stage of the leaves and their metabolic status. Plastidial phosphorylase (PHS1) and other enzymes play an essential role in this process since they are necessary for the synthesis of the substrates used by the initiation machinery. The mechanism of starch granule formation initiation in Arabidopsis seems to be generalizable to other plants and also to the synthesis of long-term storage starch. The latter, however, shows specific features due to the presence of more isoforms, the absence of constantly recurring starch synthesis and degradation, and the metabolic characteristics of the storage sink organs. KW - starch granules KW - starch metabolism KW - starch granule initiation KW - starch KW - granule number per chloroplast KW - starch morphology KW - Arabidopsis thaliana Y1 - 2021 U6 - https://doi.org/10.1111/tpj.15359 SN - 0960-7412 SN - 1365-313X VL - 107 IS - 3 SP - 688 EP - 697 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Küken, Anika A1 - Gennermann, Kristin A1 - Nikoloski, Zoran T1 - Characterization of maximal enzyme catalytic rates in central metabolism of Arabidopsis thaliana JF - The plant journal N2 - Availability of plant-specific enzyme kinetic data is scarce, limiting the predictive power of metabolic models and precluding identification of genetic factors of enzyme properties. Enzyme kinetic data are measuredin vitro, often under non-physiological conditions, and conclusions elicited from modeling warrant caution. Here we estimate maximalin vivocatalytic rates for 168 plant enzymes, including photosystems I and II, cytochrome-b6f complex, ATP-citrate synthase, sucrose-phosphate synthase as well as enzymes from amino acid synthesis with previously undocumented enzyme kinetic data in BRENDA. The estimations are obtained by integrating condition-specific quantitative proteomics data, maximal rates of selected enzymes, growth measurements fromArabidopsis thalianarosette with and fluxes through canonical pathways in a constraint-based model of leaf metabolism. In comparison to findings inEscherichia coli, we demonstrate weaker concordance between the plant-specificin vitroandin vivoenzyme catalytic rates due to a low degree of enzyme saturation. This is supported by the finding that concentrations of nicotinamide adenine dinucleotide (phosphate), adenosine triphosphate and uridine triphosphate, calculated based on our maximalin vivocatalytic rates, and available quantitative metabolomics data are below reportedKMvalues and, therefore, indicate undersaturation of respective enzymes. Our findings show that genome-wide profiling of enzyme kinetic properties is feasible in plants, paving the way for understanding resource allocation. KW - Arabidopsis thaliana KW - constraint-based modeling KW - enzyme catalytic rates KW - kinetic parameter KW - metabolic network KW - turnover number Y1 - 2020 U6 - https://doi.org/10.1111/tpj.14890 SN - 0960-7412 SN - 1365-313X VL - 103 IS - 6 SP - 2168 EP - 2177 PB - Wiley CY - Oxford ER - TY - JOUR A1 - Muntaha, Sidratul Nur A1 - Li, Xiaoping A1 - Compart, Julia A1 - Apriyanto, Ardha A1 - Fettke, Jörg T1 - Carbon pathways during transitory starch degradation in Arabidopsis differentially affect the starch granule number and morphology in the dpe2/phs1 mutant background JF - Plant physiology and biochemistry : an official journal of the Federation of European Societies of Plant Physiology N2 - The Arabidopsis knockout mutant lacking both the cytosolic disproportionating enzyme 2 (DPE2) and the plastidial phosphorylase (PHS1) had a dwarf-growth phenotype, a reduced and uneven distribution of starch within the plant rosettes, and a lower starch granule number per chloroplast under standard growth conditions. In contrast, a triple mutant impaired in starch degradation by its additional lack of the glucan, water dikinase (GWD) showed improved plant growth, a starch-excess phenotype, and a homogeneous starch distribution. Furthermore, the number of starch granules per chloroplast was increased and was similar to the wild type. We concluded that ongoing starch degradation is mainly responsible for the observed phenotype of dpe2/phs1. Next, we generated two further triple mutants lacking either the phosphoglucan, water dikinase (PWD), or the disproportionating enzyme 1 (DPE1) in the background of the double mutant. Analysis of the starch metabolism revealed that even minor ongoing starch degradation observed in dpe2/phs1/pwd maintained the double mutant phenotype. In contrast, an additional blockage in the glucose pathway of starch breakdown, as in dpe2/phs1/ dpe1, resulted in a nearly starch-free phenotype and massive chloroplast degradation. The characterized mutants were discussed in the context of starch granule formation. KW - Starch granules KW - Starch metabolism KW - Starch granule number per KW - chloroplast KW - Starch morphology KW - LCSM KW - Arabidopsis thaliana Y1 - 2022 U6 - https://doi.org/10.1016/j.plaphy.2022.03.033 SN - 0981-9428 SN - 1873-2690 VL - 180 SP - 35 EP - 41 PB - Elsevier CY - Paris ER - TY - JOUR A1 - Liu, Qingting A1 - Zhou, Yuan A1 - Fettke, Jörg T1 - Starch granule size and morphology of Arabidopsis thaliana starch-related mutants analyzed during diurnal rhythm and development JF - Molecules : a journal of synthetic chemistry and natural product chemistry / Molecular Diversity Preservation International N2 - Transitory starch plays a central role in the life cycle of plants. Many aspects of this important metabolism remain unknown; however, starch granules provide insight into this persistent metabolic process. Therefore, monitoring alterations in starch granules with high temporal resolution provides one significant avenue to improve understanding. Here, a previously established method that combines LCSM and safranin-O staining for in vivo imaging of transitory starch granules in leaves of Arabidopsis thaliana was employed to demonstrate, for the first time, the alterations in starch granule size and morphology that occur both throughout the day and during leaf aging. Several starch-related mutants were included, which revealed differences among the generated granules. In ptst2 and sex1-8, the starch granules in old leaves were much larger than those in young leaves; however, the typical flattened discoid morphology was maintained. In ss4 and dpe2/phs1/ss4, the morphology of starch granules in young leaves was altered, with a more rounded shape observed. With leaf development, the starch granules became spherical exclusively in dpe2/phs1/ss4. Thus, the presented data provide new insights to contribute to the understanding of starch granule morphogenesis. KW - starch metabolism KW - starch granule KW - starch granule size KW - starch granule morphology KW - LCSM KW - Arabidopsis thaliana Y1 - 2021 U6 - https://doi.org/10.3390/molecules26195859 SN - 1420-3049 VL - 26 SP - 1 EP - 9 PB - MDPI CY - Basel, Schweiz ET - 19 ER - TY - JOUR A1 - Tejos, Ricardo A1 - Rodriguez-Furlan, Cecilia A1 - Adamowski, Maciej A1 - Sauer, Michael A1 - Norambuena, Lorena A1 - Friml, Jiri T1 - PATELLINS are regulators of auxin-mediated PIN1 relocation and plant development in Arabidopsis thaliana JF - Journal of cell science N2 - Coordinated cell polarization in developing tissues is a recurrent theme in multicellular organisms. In plants, a directional distribution of the plant hormone auxin is at the core of many developmental programs. A feedback regulation of auxin on the polarized localization of PIN auxin transporters in individual cells has been proposed as a self-organizing mechanism for coordinated tissue polarization, but the molecular mechanisms linking auxin signalling to PIN-dependent auxin transport remain unknown. We used a microarray-based approach to find regulators of the auxin-induced PIN relocation in Arabidopsis thaliana root, and identified a subset of a family of phosphatidylinositol transfer proteins (PITPs), the PATELLINs (PATLs). Here, we show that PATLs are expressed in partially overlapping cell types in different tissues going through mitosis or initiating differentiation programs. PATLs are plasma membrane-associated proteins accumulated in Arabidopsis embryos, primary roots, lateral root primordia and developing stomata. Higher order patl mutants display reduced PIN1 repolarization in response to auxin, shorter root apical meristem, and drastic defects in embryo and seedling development. This suggests that PATLs play a redundant and crucial role in polarity and patterning in Arabidopsis. KW - PATELLIN KW - Auxin KW - Arabidopsis thaliana KW - Auxin transport KW - Canalization Y1 - 2018 U6 - https://doi.org/10.1242/jcs.204198 SN - 0021-9533 SN - 1477-9137 VL - 131 IS - 2 PB - Company of Biologists Limited CY - Cambridge ER - TY - JOUR A1 - Hansen, Bjoern Oest A1 - Meyer, Etienne H. A1 - Ferrari, Camilla A1 - Vaid, Neha A1 - Movahedi, Sara A1 - Vandepoele, Klaas A1 - Nikoloski, Zoran A1 - Mutwil, Marek T1 - Ensemble gene function prediction database reveals genes important for complex I formation in Arabidopsis thaliana JF - New phytologist : international journal of plant science N2 - Recent advances in gene function prediction rely on ensemble approaches that integrate results from multiple inference methods to produce superior predictions. Yet, these developments remain largely unexplored in plants. We have explored and compared two methods to integrate 10 gene co-function networks for Arabidopsis thaliana and demonstrate how the integration of these networks produces more accurate gene function predictions for a larger fraction of genes with unknown function. These predictions were used to identify genes involved in mitochondrial complex I formation, and for five of them, we confirmed the predictions experimentally. The ensemble predictions are provided as a user-friendly online database, EnsembleNet. The methods presented here demonstrate that ensemble gene function prediction is a powerful method to boost prediction performance, whereas the EnsembleNet database provides a cutting-edge community tool to guide experimentalists. KW - Arabidopsis thaliana KW - co-function network KW - complex I KW - ensemble prediction KW - gene function prediction Y1 - 2017 U6 - https://doi.org/10.1111/nph.14921 SN - 0028-646X SN - 1469-8137 VL - 217 IS - 4 SP - 1521 EP - 1534 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Malinova, Irina A1 - Mahto, Harendra A1 - Brandt, Felix A1 - AL-Rawi, Shadha A1 - Qasim, Hadeel A1 - Brust, Henrike A1 - Hejazi, Mahdi A1 - Fettke, Jörg T1 - EARLY STARVATION1 specifically affects the phosphorylation action of starch-related dikinases JF - The plant journal N2 - Starch phosphorylation by starch-related dikinases glucan, water dikinase (GWD) and phosphoglucan, water dikinase (PWD) is a key step in starch degradation. Little information is known about the precise structure of the glucan substrate utilized by the dikinases and about the mechanisms by which these structures may be influenced. A 50-kDa starch-binding protein named EARLY STARVATION1 (ESV1) was analyzed regarding its impact on starch phosphorylation. In various invitro assays, the influences of the recombinant protein ESV1 on the actions of GWD and PWD on the surfaces of native starch granules were analyzed. In addition, we included starches from various sources as well as truncated forms of GWD. ESV1 preferentially binds to highly ordered, -glucans, such as starch and crystalline maltodextrins. Furthermore, ESV1 specifically influences the action of GWD and PWD at the starch granule surface. Starch phosphorylation by GWD is decreased in the presence of ESV1, whereas the action of PWD increases in the presence of ESV1. The unique alterations observed in starch phosphorylation by the two dikinases are discussed in regard to altered glucan structures at the starch granule surface. KW - Arabidopsis thaliana KW - EARLY STARVATION1 KW - glucan KW - phosphoglucan KW - starch granule surface KW - starch phosphorylation KW - water dikinase Y1 - 2018 U6 - https://doi.org/10.1111/tpj.13937 SN - 0960-7412 SN - 1365-313X VL - 95 IS - 1 SP - 126 EP - 137 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Liu, Hsiang-chin A1 - Lämke, Jörn A1 - Lin, Siou-ying A1 - Hung, Meng-Ju A1 - Liu, Kuan-Ming A1 - Charng, Yee-yung A1 - Bäurle, Isabel T1 - Distinct heat shock factors and chromatin modifications mediate the organ-autonomous transcriptional memory of heat stress JF - The plant journal N2 - Plants can be primed by a stress cue to mount a faster or stronger activation of defense mechanisms upon subsequent stress. A crucial component of such stress priming is the modified reactivation of genes upon recurring stress; however, the underlying mechanisms of this are poorly understood. Here, we report that dozens of Arabidopsis thaliana genes display transcriptional memory, i.e. stronger upregulation after a recurring heat stress, that lasts for at least 3 days. We define a set of transcription factors involved in this memory response and show that the transcriptional memory results in enhanced transcriptional activation within minutes of the onset of a heat stress cue. Further, we show that the transcriptional memory is active in all tissues. It may last for up to a week, and is associated during this time with histone H3 lysine 4 hypermethylation. This transcriptional memory is cis-encoded, as we identify a promoter fragment that confers memory onto a heterologous gene. In summary, heat-induced transcriptional memory is a widespread and sustained response, and our study provides a framework for future mechanistic studies of somatic stress memory in higher plants. KW - epigenetics KW - priming KW - heat stress KW - H3K4 methylation KW - transcriptional memory KW - Arabidopsis thaliana KW - HSF Y1 - 2018 U6 - https://doi.org/10.1111/tpj.13958 SN - 0960-7412 SN - 1365-313X VL - 95 IS - 3 SP - 401 EP - 413 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Liu, Qingting A1 - Li, Xiaoping A1 - Fettke, Jörg T1 - Starch granules in Arabidopsis thaliana mesophyll and guard cells show similar morphology but differences in size and number JF - International journal of molecular sciences N2 - Transitory starch granules result from complex carbon turnover and display specific situations during starch synthesis and degradation. The fundamental mechanisms that specify starch granule characteristics, such as granule size, morphology, and the number per chloroplast, are largely unknown. However, transitory starch is found in the various cells of the leaves of Arabidopsis thaliana, but comparative analyses are lacking. Here, we adopted a fast method of laser confocal scanning microscopy to analyze the starch granules in a series of Arabidopsis mutants with altered starch metabolism. This allowed us to separately analyze the starch particles in the mesophyll and in guard cells. In all mutants, the guard cells were always found to contain more but smaller plastidial starch granules than mesophyll cells. The morphological properties of the starch granules, however, were indiscernible or identical in both types of leaf cells. KW - starch granules KW - starch granule number per chloroplast KW - starch morphology KW - mesophyll cell KW - guard cell KW - LCSM KW - Arabidopsis thaliana KW - starch granule initiation KW - starch metabolism Y1 - 2021 U6 - https://doi.org/10.3390/ijms22115666 SN - 1422-0067 SN - 1661-6596 VL - 22 IS - 11 PB - Molecular Diversity Preservation International CY - Basel ER - TY - JOUR A1 - Zhang, Yunming A1 - Ramming, Anna A1 - Heinke, Lisa A1 - Altschmied, Lothar A1 - Slotkin, R. Keith A1 - Becker, Jörg D. A1 - Kappel, Christian A1 - Lenhard, Michael T1 - The poly(A) polymerase PAPS1 interacts with the RNA-directed DNA-methylation pathway in sporophyte and pollen development JF - The plant journal N2 - RNA-based processes play key roles in the regulation of eukaryotic gene expression. This includes both the processing of pre-mRNAs into mature mRNAs ready for translation and RNA-based silencing processes, such as RNA-directed DNA methylation (RdDM). Polyadenylation of pre-mRNAs is one important step in their processing and is carried out by three functionally specialized canonical nuclear poly(A) polymerases in Arabidopsis thaliana. Null mutations in one of these, termed PAPS1, result in a male gametophytic defect. Using a fluorescence-labelling strategy, we have characterized this defect in more detail using RNA and small-RNA sequencing. In addition to global defects in the expression of pollen-differentiation genes, paps1 null-mutant pollen shows a strong overaccumulation of transposable element (TE) transcripts, yet a depletion of 21- and particularly 24-nucleotide-long short interfering RNAs (siRNAs) and microRNAs (miRNAs) targeting the corresponding TEs. Double-mutant analyses support a specific functional interaction between PAPS1 and components of the RdDM pathway, as evident from strong synergistic phenotypes in mutant combinations involving paps1, but not paps2 paps4, mutations. In particular, the double-mutant of paps1 and rna-dependent rna polymerase 6 (rdr6) shows a synergistic developmental phenotype disrupting the formation of the transmitting tract in the female gynoecium. Thus, our findings in A. thaliana uncover a potentially general link between canonical poly(A) polymerases as components of mRNA processing and RdDM, reflecting an analogous interaction in fission yeast. KW - poly(A) polymerase KW - RNA-directed DNA methylation KW - pollen development KW - siRNAs KW - transposable elements KW - gynoecium development KW - Arabidopsis thaliana Y1 - 2019 U6 - https://doi.org/10.1111/tpj.14348 SN - 0960-7412 SN - 1365-313X VL - 99 IS - 4 SP - 655 EP - 672 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Pandey, Prashant K. A1 - Yu, Jing A1 - Omranian, Nooshin A1 - Alseekh, Saleh A1 - Vaid, Neha A1 - Fernie, Alisdair A1 - Nikoloski, Zoran A1 - Laitinen, Roosa A. E. T1 - Plasticity in metabolism underpins local responses to nitrogen in Arabidopsis thaliana populations JF - Plant Direct N2 - Nitrogen (N) is central for plant growth, and metabolic plasticity can provide a strategy to respond to changing N availability. We showed that two local A. thaliana populations exhibited differential plasticity in the compounds of photorespiratory and starch degradation pathways in response to three N conditions. Association of metabolite levels with growth-related and fitness traits indicated that controlled plasticity in these pathways could contribute to local adaptation and play a role in plant evolution. KW - Arabidopsis thaliana KW - natural variation KW - nitrogen availability KW - photorespiration KW - plasticity Y1 - 2019 U6 - https://doi.org/10.1002/pld3.186 SN - 2475-4455 VL - 3 IS - 11 PB - John Wiley & sonst LTD CY - Chichester ER - TY - JOUR A1 - Bäurle, Isabel A1 - Brzezinka, Krzysztof A1 - Altmann, Simone T1 - BRUSHY1/TONSOKU/MGOUN3 is required for heat stress memory JF - Plant Cell & Environment N2 - Plants encounter biotic and abiotic stresses many times during their life cycle and this limits their productivity. Moderate heat stress (HS) primes a plant to survive higher temperatures that are lethal in the naïve state. Once temperature stress subsides, the memory of the priming event is actively retained for several days preparing the plant to better cope with recurring HS. Recently, chromatin regulation at different levels has been implicated in HS memory. Here, we report that the chromatin protein BRUSHY1 (BRU1)/TONSOKU/MGOUN3 plays a role in the HS memory in Arabidopsis thaliana. BRU1 is also involved in transcriptional gene silencing and DNA damage repair. This corresponds with the functions of its mammalian orthologue TONSOKU‐LIKE/NFΚBIL2. During HS memory, BRU1 is required to maintain sustained induction of HS memory‐associated genes, whereas it is dispensable for the acquisition of thermotolerance. In summary, we report that BRU1 is required for HS memory in A. thaliana, and propose a model where BRU1 mediates the epigenetic inheritance of chromatin states across DNA replication and cell division. KW - Arabidopsis thaliana KW - BRUSHY1 KW - chromatin KW - priming Y1 - 2019 U6 - https://doi.org/10.1111/pce.13365 VL - 42 SP - 771 EP - 781 ER - TY - JOUR A1 - Lisso, Janina A1 - Altmann, Thomas A1 - Müssig, Carsten T1 - The AtNFXL1 gene encodes a NF-X1 type zinc finger protein required for growth under salt stress JF - FEBS letters : the journal for rapid publication of short reports in molecular biosciences N2 - The human NF-X1 protein and homologous proteins in eukaryotes represent a class of transcription factors which are characterised. by NF-X1 type zinc finger motifs. The Arabidopsis genome encodes two NF-X1 homologs, which we termed AtNFXL1 and AtNFXL2. Growth and survival was impaired in atnfxl1 knock-out mutants and AtNFXL1-antisense plants under salt stress in comparison to wild-type plants. In contrast, 35S: :AtNFXL1 plants showed higher survival rates. The AtNFXL2 protein potentially plays an antagonistic role. The Arabidopsis NF-X1 type zinc finger proteins likely are part of regulatory mechanisms, which protect major processes such as photosynthesis. KW - Arabidopsis thaliana KW - NF-X1 KW - salt stress Y1 - 2006 U6 - https://doi.org/10.1016/j.febslet.2006.07.079 SN - 0014-5793 VL - 580 IS - 22 SP - 4851 EP - 4856 PB - Elsevier CY - Amsterdam ER -