TY - JOUR A1 - Oskinova, Lida A1 - Hamann, Wolf-Rainer A1 - Cassinelli, Joseph P. A1 - Brown, John C. A1 - Todt, Helge Tobias T1 - X-ray emission from massive stars with magnetic fields JF - Astronomische Nachrichten = Astronomical notes N2 - We investigate the connections between the magnetic fields and the X-ray emission from massive stars. Our study shows that the X-ray properties of known strongly magnetic stars are diverse: while some comply to the predictions of the magnetically confined wind model, others do not. We conclude that strong, hard, and variable X-ray emission may be a sufficient attribute of magnetic massive stars, but it is not a necessary one. We address the general properties of X-ray emission from "normal" massive stars, especially the long standing mystery about the correlations between the parameters of X-ray emission and fundamental stellar properties. The recent development in stellar structure modeling shows that small-scale surface magnetic fields may be common. We suggest a "hybrid" scenario which could explain the X-ray emission from massive stars by a combination of magnetic mechanisms on the surface and shocks in the stellar wind. The magnetic mechanisms and the wind shocks are triggered by convective motions in sub-photospheric layers. This scenario opens the door for a natural explanation of the well established correlation between bolometric and X-ray luminosities. KW - stars: magnetic fields KW - stars: mass-loss KW - stars: winds, outflows KW - stars: Wolf-Rayet KW - techniques: spectroscopic KW - X-rays: stars Y1 - 2011 U6 - https://doi.org/10.1002/asna.201111602 SN - 0004-6337 VL - 332 IS - 9-10 SP - 988 EP - 993 PB - Wiley-Blackwell CY - Malden ER - TY - JOUR A1 - Sander, A. A1 - Hamann, Wolf-Rainer A1 - Todt, Helge Tobias T1 - The Galactic WC stars Stellar parameters from spectral analyses indicate a new evolutionary sequence JF - Astronomy and astrophysics : an international weekly journal N2 - Context. The life cycles of massive stars from the main sequence to their explosion as supernovae or gamma ray bursts are not yet fully clear, and the empirical results from spectral analyses are partly in conflict with current evolutionary models. The spectral analysis of Wolf-Rayet stars requires the detailed modeling of expanding stellar atmospheres in non-LTE. The Galactic WN stars have been comprehensively analyzed with such models of the latest stage of sophistication, while a similarly comprehensive study of the Galactic WC sample remains undone. Aims. We aim to establish the stellar parameters and mass-loss rates of the Galactic WC stars. These data provide the empirical basis of studies of (i) the role of WC stars in the evolution of massive stars, (ii) the wind-driving mechanisms, and (iii) the feedback of WC stars as input to models of the chemical and dynamical evolution of galaxies. Methods. We analyze the nearly complete sample of un-obscured Galactic WC stars, using optical spectra as well as ultraviolet spectra when available. The observations are fitted with theoretical spectra, using the Potsdam Wolf-Rayet (PoWR) model atmosphere code. A large grid of line-blanked models has been established for the range of WC subtypes WC4 - WC8, and smaller grids for the WC9 parameter domain. Both WO stars and WN/WC transit types are also analyzed using special models. Results. Stellar and atmospheric parameters are derived for more than 50 Galactic WC and two WO stars, covering almost the whole Galactic WC population as far as the stars are single, and un-obscured in the visual. In the Hertzsprung-Russell diagram, the WC stars reside between the hydrogen and the helium zero-age main sequences, having luminosities L from 10(4.9) to 10(5.6) L-circle dot. The mass-loss rates scale very tightly with L-0.8. The two WO stars in our sample turn out to be outstandingly hot (approximate to 200 kK) and do not fit into the WC scheme. Conclusions. By comparing the empirical WC positions in the Hertzsprung-Russell diagram with evolutionary models, and from recent supernova statistics, we conclude that WC stars have evolved from initial masses between 20 solar masses and 45 M-circle dot. In contrast to previous assumptions, it seems that WC stars in general do not descend from the most massive stars. Only the WO stars might stem from progenitors that have been initially more massive than 45 M-circle dot. KW - stars: massive KW - stars: mass-loss KW - stars: Wolf-Rayet KW - stars: evolution KW - stars: atmospheres KW - stars: winds, outflows Y1 - 2012 U6 - https://doi.org/10.1051/0004-6361/201117830 SN - 0004-6361 VL - 540 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Surlan, B. A1 - Hamann, Wolf-Rainer A1 - Kubat, Jirij A1 - Oskinova, Lida A1 - Feldmeier, Achim T1 - Three-dimensional radiative transfer in clumped hot star winds I influence of clumping on the resonance line formation JF - Astronomy and astrophysics : an international weekly journal N2 - Context. The true mass-loss rates from massive stars are important for many branches of astrophysics. For the correct modeling of the resonance lines, which are among the key diagnostics of stellar mass-loss, the stellar wind clumping has been found to be very important. To incorporate clumping into a radiative transfer calculation, three-dimensional (3D) models are required. Various properties of the clumps may have a strong impact on the resonance line formation and, therefore, on the determination of empirical mass-loss rates. Aims. We incorporate the 3D nature of the stellar wind clumping into radiative transfer calculations and investigate how different model parameters influence the resonance line formation. Methods. We develop a full 3D Monte Carlo radiative transfer code for inhomogeneous expanding stellar winds. The number density of clumps follows the mass conservation. For the first time, we use realistic 3D models that describe the dense as well as the tenuous wind components to model the formation of resonance lines in a clumped stellar wind. At the same time, we account for non-monotonic velocity fields. Results. The 3D density and velocity wind inhomogeneities show that there is a very strong impact on the resonance line formation. The different parameters describing the clumping and the velocity field results in different line strengths and profiles. We present a set of representative models for various sets of model parameters and investigate how the resonance lines are affected. Our 3D models show that the line opacity is lower for a larger clump separation and shallower velocity gradients within the clumps. Conclusions. Our model demonstrates that to obtain empirically correct mass-loss rates from the UV resonance lines, the wind clumping and its 3D nature must be taken into account. KW - stars: winds, outflows KW - stars: mass-loss KW - stars: early-type Y1 - 2012 U6 - https://doi.org/10.1051/0004-6361/201118590 SN - 0004-6361 VL - 541 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Guerrero, Martín A. A1 - Ruiz, N. A1 - Hamann, Wolf-Rainer A1 - Chu, Y.-H. A1 - Todt, Helge Tobias A1 - Schönberner, Detlef A1 - Oskinova, Lida A1 - Gründl, R. A. A1 - Steffen, M. A1 - Blair, William P. A1 - Toala, Jesús Alberto T1 - Rebirth of X-Ray emission from the born-again planetary Nebula A30 JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - The planetary nebula A30 is believed to have undergone a very late thermal pulse resulting in the ejection of knots of hydrogen-poor material. Using multi-epoch Hubble Space Telescope images, we have detected the angular expansion of these knots and derived an age of 850(-150)(+280) yr. To investigate the spectral and spatial properties of the soft X-ray emission detected by ROSAT, we have obtained Chandra and XMM-Newton deep observations of A30. The X-ray emission from A30 can be separated into two components: a point source at the central star and diffuse emission associated with the hydrogen-poor knots and the cloverleaf structure inside the nebular shell. To help us assess the role of the current stellar wind in powering this X-ray emission, we have determined the stellar parameters and wind properties of the central star of A30 using a non-LTE model fit to its optical and UV spectra. The spatial distribution and spectral properties of the diffuse X-ray emission are highly suggestive that it is generated by the post-born-again and present fast stellar winds interacting with the hydrogen-poor ejecta of the born-again event. This emission can be attributed to shock-heated plasma, as the hydrogen-poor knots are ablated by the stellar winds, under which circumstances the efficient mass loading of the present fast stellar wind raises its density and damps its velocity to produce the observed diffuse soft X-rays. Charge transfer reactions between the ions of the stellar winds and material of the born-again ejecta have also been considered as a possible mechanism for the production of diffuse X-ray emission, and upper limits on the expected X-ray production by this mechanism have been derived. The origin of the X-ray emission from the central star of A30 is puzzling: shocks in the present fast stellar wind and photospheric emission can be ruled out, while the development of a new, compact hot bubble confining the fast stellar wind seems implausible. KW - planetary nebulae: general KW - planetary nebulae: individual (A30) KW - stars: winds, outflows KW - X-rays: ISM Y1 - 2012 U6 - https://doi.org/10.1088/0004-637X/755/2/129 SN - 0004-637X VL - 755 IS - 2 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Ignace, Rico A1 - Gayley, Kenneth G. A1 - Hamann, Wolf-Rainer A1 - Huenemoerder, David P. A1 - Oskinova, Lida A1 - Pollock, Andy M. T. A1 - McFall, Michael T1 - THE XMM-NEWTON/EPIC X-RAY LIGHT CURVE ANALYSIS OF WR 6 JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - We obtained four pointings of over 100 ks each of the well-studied Wolf-Rayet star WR 6 with the XMM-Newton satellite. With a first paper emphasizing the results of spectral analysis, this follow-up highlights the X-ray variability clearly detected in all four pointings. However, phased light curves fail to confirm obvious cyclic behavior on the well-established 3.766 day period widely found at longer wavelengths. The data are of such quality that we were able to conduct a search for event clustering in the arrival times of X-ray photons. However, we fail to detect any such clustering. One possibility is that X-rays are generated in a stationary shock structure. In this context we favor a corotating interaction region (CIR) and present a phenomenological model for X-rays from a CIR structure. We show that a CIR has the potential to account simultaneously for the X-ray variability and constraints provided by the spectral analysis. Ultimately, the viability of the CIR model will require both intermittent long-term X-ray monitoring of WR 6 and better physical models of CIR X-ray production at large radii in stellar winds. KW - stars: individual (WR 6) KW - stars: winds, outflows KW - stars: Wolf-Rayet KW - X-rays: stars Y1 - 2013 U6 - https://doi.org/10.1088/0004-637X/775/1/29 SN - 0004-637X VL - 775 IS - 1 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Oskinova, Lida A1 - Sun, W. A1 - Evans, C. J. A1 - Henault-Brunet, V. A1 - Chu, Y.-H. A1 - Gallagher, J. S. A1 - Guerrero, Martín A. A1 - Gruendl, R. A. A1 - Güdel, M. A1 - Silich, S. A1 - Chen, Y. A1 - Naze, Y. A1 - Hainich, Rainer A1 - Reyes-Iturbide, J. T1 - Discovery of x-ray emission from young suns in the small magellanic cloud JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - We report the discovery of extended X-ray emission within the young star cluster NGC 602a in the Wing of the Small Magellanic Cloud (SMC) based on observations obtained with the Chandra X-Ray Observatory. X-ray emission is detected from the cluster core area with the highest stellar density and from a dusty ridge surrounding the H II region. We use a census of massive stars in the cluster to demonstrate that a cluster wind or wind-blown bubble is unlikely to provide a significant contribution to the X-ray emission detected from the central area of the cluster. We therefore suggest that X-ray emission at the cluster core originates from an ensemble of low-and solar-mass pre-main-sequence (PMS) stars, each of which would be too weak in X-rays to be detected individually. We attribute the X-ray emission from the dusty ridge to the embedded tight cluster of the newborn stars known in this area from infrared studies. Assuming that the levels of X-ray activity in young stars in the low-metallicity environment of NGC 602a are comparable to their Galactic counterparts, then the detected spatial distribution, spectral properties, and level of X-ray emission are largely consistent with those expected from low-and solar-mass PMS stars and young stellar objects (YSOs). This is the first discovery of X-ray emission attributable to PMS stars and YSOs in the SMC, which suggests that the accretion and dynamo processes in young, low-mass objects in the SMC resemble those in the Galaxy. KW - Magellanic Clouds KW - ISM: bubbles KW - H II regions KW - stars: winds, outflows KW - stars: pre-main sequence KW - X-rays: stars Y1 - 2013 U6 - https://doi.org/10.1088/0004-637X/765/1/73 SN - 0004-637X VL - 765 IS - 1 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Kusterer, D. -J. A1 - Nagel, T. A1 - Hartmann, S. A1 - Werner, K. A1 - Feldmeier, Achim T1 - Monte Carlo radiation transfer in CV disk winds: application to the AM CVn prototype JF - Astronomy and astrophysics : an international weekly journal N2 - Context. AMCVn systems are ultracompact binaries in which a (semi-) degenerate star transfers helium-dominated matter onto a white dwarf. They are effective gravitational-wave emitters and potential progenitors of Type Ia supernovae. Aims. To understand the evolution of AMCVn systems it is necessary to determine their mass-loss rate through their radiation-driven accretion-disk wind. We constructed models to perform quantitative spectroscopy of P Cygni line profiles that were detected in UV spectra. Methods. We performed 2.5D Monte Carlo radiative transfer calculations in hydrodynamic wind structures by making use of realistic NLTE spectra from the accretion disk and by accounting for the white dwarf as an additional photon source. Results. We present first results from calculations in which LTE opacities are used in the wind model. A comparison with UV spectroscopy of the AMCVn prototype shows that the modeling procedure is potentially a good tool for determining mass-loss rates and abundances of trace metals in the helium-rich wind. KW - radiative transfer KW - stars: winds, outflows KW - stars: individual: AM CVn KW - accretion, accretion disks Y1 - 2014 U6 - https://doi.org/10.1051/0004-6361/201321438 SN - 0004-6361 SN - 1432-0746 VL - 561 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Hainich, Rainer A1 - Ruehling, Ute A1 - Todt, Helge Tobias A1 - Oskinova, Lida A1 - Liermann, A. A1 - Graefener, G. A1 - Foellmi, C. A1 - Schnurr, O. A1 - Hamann, Wolf-Rainer T1 - The Wolf-Rayet stars in the Large Magellanic Cloud - A comprehensive analysis of the WN class JF - Astronomy and astrophysics : an international weekly journal N2 - Context. Massive stars, although being important building blocks of galaxies, are still not fully understood. This especially holds true for Wolf-Rayet (WR) stars with their strong mass loss, whose spectral analysis requires adequate model atmospheres. Aims. Following our comprehensive studies of the WR stars in the Milky Way, we now present spectroscopic analyses of almost all known WN stars in the LMC. Methods. For the quantitative analysis of the wind-dominated emission-line spectra, we employ the Potsdam Wolf-Rayet (PoWR) model atmosphere code. By fitting synthetic spectra to the observed spectral energy distribution and the available spectra (ultraviolet and optical), we obtain the physical properties of 107 stars. Results. We present the fundamental stellar and wind parameters for an almost complete sample of WN stars in the LMC. Among those stars that are putatively single, two different groups can be clearly distinguished. While 12% of our sample are more luminous than 10(6) L-circle dot and contain a significant amount of hydrogen, 88% of the WN stars, with little or no hydrogen, populate the luminosity range between log (L/L-circle dot) = 5.3 ... 5.8. Conclusions. While the few extremely luminous stars (log (L/L-circle dot) > 6), if indeed single stars, descended directly from the main sequence at very high initial masses, the bulk of WN stars have gone through the red-supergiant phase. According to their luminosities in the range of log (L/L-circle dot) = 5.3 ... 5.8, these stars originate from initial masses between 20 and 40 M-circle dot. This mass range is similar to the one found in the Galaxy, i.e. the expected metallicity dependence of the evolution is not seen. Current stellar evolution tracks, even when accounting for rotationally induced mixing, still partly fail to reproduce the observed ranges of luminosities and initial masses. Moreover, stellar radii are generally larger and effective temperatures correspondingly lower than predicted from stellar evolution models, probably due to subphotospheric inflation. KW - stars: Wolf-Rayet KW - Magellanic Clouds KW - stars: early-type KW - stars: atmospheres KW - stars: winds, outflows KW - stars: mass-loss Y1 - 2014 U6 - https://doi.org/10.1051/0004-6361/201322696 SN - 0004-6361 SN - 1432-0746 VL - 565 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Massa, D. A1 - Oskinova, Lida A1 - Fullerton, A. W. A1 - Prinja, R. K. A1 - Bohlender, D. A. A1 - Morrison, N. D. A1 - Blake, M. A1 - Pych, W. T1 - CIR modulation of the X-ray flux from the O7.5 III(n)((f)) star xi Persei(a similar to...)? JF - Monthly notices of the Royal Astronomical Society N2 - We analyse a 162 ks high energy transmission grating Chandra observation of the O7.5 III(n)((f)) star xi Per, together with contemporaneous H alpha observations. The X-ray spectrum of this star is similar to other single O stars, and not pathological in any way. Its UV wind lines are known to display cyclical time variability, with a period of 2.086 d, which is thought to be associated with corotating interaction regions (CIRs). We examine the Chandra and H alpha data for variability on this time-scale. We find that the X-rays vary by similar to 15 per cent over the course of the observations and that this variability is out of phase with variable absorption on the blue wing of the H alpha profiles (assumed to be a surrogate for the UV absorption associated with CIRs). While not conclusive, both sets of data are consistent with models where the CIRs are either a source of X-rays or modulate them. KW - stars: early-type KW - stars: individual: xi Persei KW - stars: mass loss KW - stars: winds, outflows KW - X-rays: stars Y1 - 2014 U6 - https://doi.org/10.1093/mnras/stu565 SN - 0035-8711 SN - 1365-2966 VL - 441 IS - 3 SP - 2173 EP - 2180 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Hainich, Rainer A1 - Pasemann, Diana A1 - Todt, Helge Tobias A1 - Shenar, Tomer A1 - Sander, Andreas Alexander Christoph A1 - Hamann, Wolf-Rainer T1 - Wolf-Rayet stars in the Small Magellanic Cloud I. Analysis of the single WN stars JF - Astronomy and astrophysics : an international weekly journal N2 - Context. Wolf-Rayet (WR) stars have a severe impact on their environments owing to their strong ionizing radiation fields and powerful stellar winds. Since these winds are considered to be driven by radiation pressure, it is theoretically expected that the degree of the wind mass-loss depends on the initial metallicity of WR stars. Aims. Following our comprehensive studies of WR stars in the Milky Way, M31, and the LMC, we derive stellar parameters and mass-loss rates for all seven putatively single WN stars known in the SMC. Based on these data, we discuss the impact of a low-metallicity environment on the mass loss and evolution of WR stars. Methods. The quantitative analysis of the WN stars is performed with the Potsdam Wolf-Rayet (PoWR) model atmosphere code. The physical properties of our program stars are obtained from fitting synthetic spectra to multi-band observations. Results. In all SMC WN stars, a considerable surface hydrogen abundance is detectable. The majority of these objects have stellar temperatures exceeding 75 kK, while their luminosities range from 10(5.5) to 10(6.1) L-circle dot. The WN stars in the SMC exhibit on average lower mass-loss rates and weaker winds than their counterparts in the Milky Way, M31, and the LMC. Conclusions. By comparing the mass-loss rates derived for WN stars in different Local Group galaxies, we conclude that a clear dependence of the wind mass-loss on the initial metallicity is evident, supporting the current paradigm that WR winds are driven by radiation. A metallicity effect on the evolution of massive stars is obvious from the HRD positions of the SMC WN stars at high temperatures and high luminosities. Standard evolution tracks are not able to reproduce these parameters and the observed surface hydrogen abundances. Homogeneous evolution might provide a better explanation for their evolutionary past. KW - stars: Wolf-Rayet KW - Magellanic Clouds KW - stars: early-type KW - stars: atmospheres KW - stars: winds, outflows KW - stars: mass-loss Y1 - 2015 U6 - https://doi.org/10.1051/0004-6361/201526241 SN - 1432-0746 VL - 581 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Sander, Andreas Alexander Christoph A1 - Shenar, Tomer A1 - Hainich, Rainer A1 - Gimenez-Garcia, Ana A1 - Todt, Helge Tobias A1 - Hamann, Wolf-Rainer T1 - On the consistent treatment of the quasi-hydrostatic layers in hot star atmospheres JF - Astronomy and astrophysics : an international weekly journal N2 - Context. Spectroscopic analysis remains the most common method to derive masses of massive stars, the most fundamental stellar parameter. While binary orbits and stellar pulsations can provide much sharper constraints on the stellar mass, these methods are only rarely applicable to massive stars. Unfortunately, spectroscopic masses of massive stars heavily depend on the detailed physics of model atmospheres. Aims. We demonstrate the impact of a consistent treatment of the radiative pressure on inferred gravities and spectroscopic masses of massive stars. Specifically, we investigate the contribution of line and continuum transitions to the photospheric radiative pressure. We further explore the effect of model parameters, e.g., abundances, on the deduced spectroscopic mass. Lastly, we compare our results with the plane-parallel TLUSTY code, commonly used for the analysis of massive stars with photospheric spectra. Methods. We calculate a small set of O-star models with the Potsdam Wolf-Rayet (PoWR) code using different approaches for the quasi-hydrostatic part. These models allow us to quantify the effect of accounting for the radiative pressure consistently. We further use PoWR models to show how the Doppler widths of line profiles and abundances of elements such as iron affect the radiative pressure, and, as a consequence, the derived spectroscopic masses. Results. Our study implies that errors on the order of a factor of two in the inferred spectroscopic mass are to be expected when neglecting the contribution of line and continuum transitions to the radiative acceleration in the photosphere. Usage of implausible microturbulent velocities, or the neglect of important opacity sources such as Fe, may result in errors of approximately 50% in the spectroscopic mass. A comparison with TLUSTY model atmospheres reveals a very good agreement with PoWR at the limit of low mass-loss rates. KW - stars: early-type KW - stars: mass-loss KW - stars: winds, outflows KW - stars: atmospheres KW - stars: fundamental parameters KW - stars: massive Y1 - 2015 U6 - https://doi.org/10.1051/0004-6361/201425356 SN - 0004-6361 SN - 1432-0746 VL - 577 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Todt, Helge Tobias A1 - Sander, Angelika A1 - Hainich, Rainer A1 - Hamann, Wolf-Rainer A1 - Quade, Markus A1 - Shenar, Tomer T1 - Potsdam Wolf-Rayet model atmosphere grids for WN stars JF - Astronomy and astrophysics : an international weekly journal N2 - We present new grids of Potsdam Wolf-Rayet (PoWR) model atmospheres for Wolf-Rayet stars of the nitrogen sequence (WN stars). The models have been calculated with the latest version of the PoWR stellar atmosphere code for spherical stellar winds. The WN model atmospheres include the non-LTE solutions of the statistical equations for complex model atoms, as well as the radiative transfer equation in the co-moving frame. Iron-line blanketing is treated with the help of the superlevel approach, while wind inhomogeneities are taken into account via optically thin clumps. Three of our model grids are appropriate for Galactic metallicity. The hydrogen mass fraction of these grids is 50%, 20%, and 0%, thus also covering the hydrogen-rich late-type WR stars that have been discovered in recent years. Three grids are adequate for LMC WN stars and have hydrogen fractions of 40%, 20%, and 0%. Recently, additional grids with SMC metallicity and with 60%, 40%, 20%, and 0% hydrogen have been added. We provide contour plots of the equivalent widths of spectral lines that are usually used for classification and diagnostics. KW - stars: evolution KW - stars: mass-loss KW - stars: winds, outflows KW - stars: Wolf-Rayet KW - stars: atmospheres KW - stars: massive Y1 - 2015 U6 - https://doi.org/10.1051/0004-6361/201526253 SN - 0004-6361 SN - 1432-0746 VL - 579 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Gimenez-Garcia, Angel A1 - Torrejon, Jose Miguel A1 - Eikmann, Wiebke A1 - Martinez-Nunez, Silvia A1 - Oskinova, Lida A1 - Rodes-Roca, Jose Joaquin A1 - Bernabeu, Guillermo T1 - An XMM-Newton view of FeK alpha in high-mass X-ray binaries JF - Astronomy and astrophysics : an international weekly journal N2 - We present a comprehensive analysis of the whole sample of available XMM-Newton observations of high-mass X-ray binaries (HMXBs) until August 2013, focusing on the FeK alpha emission line. This line is key to better understanding the physical properties of the material surrounding the X-ray source within a few stellar radii (the circumstellar medium). We collected observations from 46 HMXBs and detected FeK alpha in 21 of them. We used the standard classification of HMXBs to divide the sample into different groups. We find that (1) different classes of HMXBs display different qualitative behaviours in the FeK alpha spectral region. This is visible especially in SGXBs (showing ubiquitous Fe fluorescence but not recombination Fe lines) and in gamma Cass analogues (showing both fluorescent and recombination Fe lines). (2) FeK alpha is centred at a mean value of 6.42 keV. Considering the instrumental and fits uncertainties, this value is compatible with ionization states that are lower than Fe xviii. (3) The flux of the continuum is well correlated with the flux of the line, as expected. Eclipse observations show that the Fe fluorescence emission comes from an extended region surrounding the X-ray source. (4) We observe an inverse correlation between the X-ray luminosity and the equivalent width of FeK alpha (EW). This phenomenon is known as the X-ray Baldwin effect. (5) FeK alpha is narrow (sigma(line) < 0.15 keV), reflecting that the reprocessing material does not move at high speeds. We attempt to explain the broadness of the line in terms of three possible broadening phenomena: line blending, Compton scattering, and Doppler shifts (with velocities of the reprocessing material V similar to 1000 km s(-1)). (6) The equivalent hydrogen column (N-H) directly correlates to the EW of FeK alpha, displaying clear similarities to numerical simulations. It highlights the strong link between the absorbing and the fluorescent matter. (7) The observed NH in supergiant X-ray binaries (SGXBs) is in general higher than in supergiant fast X-ray transients (SFXTs). We suggest two possible explanations: different orbital configurations or a different interaction compact object - wind. (8) Finally, we analysed the sources IGR J16320-4751 and 4U 1700-37 in more detail, covering several orbital phases. The observed variation in NH between phases is compatible with the absorption produced by the wind of their optical companions. The results clearly point to a very important contribution of the donor's wind in the FeK alpha emission and the absorption when the donor is a supergiant massive star. KW - surveys KW - X-rays: binaries KW - binaries: general KW - circumstellar matter KW - stars: winds, outflows KW - stars: early-type Y1 - 2015 U6 - https://doi.org/10.1051/0004-6361/201425004 SN - 0004-6361 SN - 1432-0746 VL - 576 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Torrejon, Jose M. A1 - Schulz, Norbert S. A1 - Nowak, Michael A. A1 - Oskinova, Lida A1 - Rodes-Roca, Jose J. A1 - Shenar, Tomer A1 - Wilms, Jörn T1 - On the radial onset of clumping in the wind of the B0I massive star QV nor JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - We present an analysis of a 78 ks Chandra high-energy transmission gratings observation of the B0I star QV Nor, the massive donor of the wind-accreting pulsar 4U1538-52. The neutron star (NS) orbits its companion in a very close orbit (r < 1.4R(*), in units of the stellar radii), thereby allowing probing of the innermost wind regions. The flux of the Fe K alpha line during eclipse reduces to only similar to 30% of the flux measured out of eclipse. This indicates that the majority of Fe fluorescence must be produced in regions close to the NS, at distances smaller than 1R(*) from its surface. The fact that the flux of the continuum decreases to only similar to 3% during eclipse allows for a high contrast of the Fe Ka line fluorescence during eclipse. The line is not resolved and centered at lambda = 1.9368(-0.0018)(+0.0032) angstrom. From the inferred plasma speed limit of v < c Delta lambda/lambda < 800 km s(-1) and range of ionization parameters of log xi =[-1, 2], together with the stellar density profile, we constrain the location of the cold, dense material in the stellar wind of QV Nor using simple geometrical considerations. We then use the Fe K alpha line fluorescence as a tracer of wind clumps and determine that these clumps in the stellar wind of QV Nor (B0I) must already be present at radii r < 1.25R(*), close to the photosphere of the star. KW - stars: individual (QV Nor, 4U1538+52) KW - stars: winds, outflows KW - X-rays: binaries Y1 - 2015 U6 - https://doi.org/10.1088/0004-637X/810/2/102 SN - 0004-637X SN - 1538-4357 VL - 810 IS - 2 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Toala, Jesús Alberto A1 - Guerrero, Martín A. A1 - Todt, Helge Tobias A1 - Hamann, Wolf-Rainer A1 - Chu, Y.-H. A1 - Gruendl, R. A. A1 - Schönberner, Detlef A1 - Oskinova, Lida A1 - Marquez-Lugo, R. A. A1 - Fang, X. A1 - Ramos-Larios, Gerardo T1 - The born-again Planetary nebula A78: an X-RAY twin of A30 JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - We present the XMM-Newton discovery of X-ray emission from the planetary nebula (PN) A78, the second born-again PN detected in X-rays apart from A30. These two PNe share similar spectral and morphological characteristics: they harbor diffuse soft X-ray emission associated with the interaction between the H-poor ejecta and the current fast stellar wind and a point-like source at the position of the central star (CSPN). We present the spectral analysis of the CSPN, using for the first time an NLTE code for expanding atmospheres that takes line blanketing into account for the UV and optical spectra. The wind abundances are used for the X-ray spectral analysis of the CSPN and the diffuse emission. The X-ray emission from the CSPN in A78 can be modeled by a single C VI emission line, while the X-ray emission from its diffuse component is better described by an optically thin plasma emission model with a temperature of kT = 0.088 keV (T approximate to 1.0 x 10(6) K). We estimate X-ray luminosities in the 0.2-2.0 keV energy band of L-X,L-CSPN =(1.2 +/- 0.3) x 10(31) erg s(-1) and L-X,L-DIFF =(9.2 +/- 2.3) x 10(30) erg s(-1) for the CSPN and diffuse components, respectively. KW - planetary nebulae: general KW - planetary nebulae: individual (A78) KW - stars: winds, outflows KW - X-rays: ISM Y1 - 2015 U6 - https://doi.org/10.1088/0004-637X/799/1/67 SN - 0004-637X SN - 1538-4357 VL - 799 IS - 1 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Richardson, Noel D. A1 - Shenar, Tomer A1 - Roy-Loubier, Olivier A1 - Schaefer, Gail A1 - Moffat, Anthony F. J. A1 - St-Louis, Nicole A1 - Gies, Douglas R. A1 - Farrington, Chris A1 - Hill, Grant M. A1 - Williams, Peredur M. A1 - Gordon, Kathryn A1 - Pablo, Herbert A1 - Ramiaramanantsoa, Tahina T1 - The CHARA Array resolves the long-period Wolf-Rayet binaries WR 137 and WR 138 JF - Monthly notices of the Royal Astronomical Society N2 - We report on interferometric observations with the CHARAArray of two classical Wolf-Rayet (WR) stars in suspected binary systems, namely WR 137 and WR 138. In both cases, we resolve the component stars to be separated by a few milliarcseconds. The data were collected in the H band, and provide a measure of the fractional flux for both stars in each system. We find that the WR star is the dominant H-band light source in both systems (fWR, 137 = 0.59 +/- 0.04; fWR, 138 = 0.67 +/- 0.01), which is confirmed through both comparisons with estimated fundamental parameters for WR stars and O dwarfs, as well as through spectral modelling of each system. Our spectral modelling also provides fundamental parameters for the stars and winds in these systems. The results on WR 138 provide evidence that it is a binary system which may have gone through a previous mass-transfer episode to create the WR star. The separation and position of the stars in the WR 137 system together with previous results from the IOTA interferometer provides evidence that the binary is seen nearly edgeon. The possible edge-on orbit of WR 137 aligns well with the dust production site imaged by the Hubble Space Telescope during a previous periastron passage, showing that the dust production may be concentrated in the orbital plane. KW - binaries: visual KW - stars: individual: WR 137 KW - stars: individual: WR 138 KW - stars: mass-loss KW - stars: winds, outflows KW - stars: Wolf-Rayet Y1 - 2016 U6 - https://doi.org/10.1093/mnras/stw1585 SN - 0035-8711 SN - 1365-2966 VL - 461 SP - 4115 EP - 4124 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Gimenez-Garcia, Ana A1 - Shenar, Tomer A1 - Torrejon, J. M. A1 - Oskinova, Lida A1 - Martinez-Nunez, S. A1 - Hamann, Wolf-Rainer A1 - Rodes-Roca, J. J. A1 - González-Galan, A. A1 - Alonso-Santiago, J. A1 - González-Fernández, C. A1 - Bernabeu, Guillermo A1 - Sander, Andreas Alexander Christoph T1 - Measuring the stellar wind parameters in IGR J17544-2619 and Vela X-1 constrains the accretion physics in supergiant fast X-ray transient and classical supergiant X-ray binaries JF - Siberian Mathematical Journal N2 - Aims. To close this gap, we perform a comparative analysis of the optical companion in two important systems: IGR J175442619 (SFXT) and Vela X-1 (SGXB). We analyze the spectra of each star in detail and derive their stellar and wind properties. As a next step, we compare the wind parameters, giving us an excellent chance of recognizing key differences between donor winds in SFXTs and SGXBs. Methods. We use archival infrared, optical and ultraviolet observations, and analyze them with the non-local thermodynamic equilibrium (NLTE) Potsdam Wolf-Rayet model atmosphere code. We derive the physical properties of the stars and their stellar winds, accounting for the influence of X-rays on the stellar winds. Results. We find that the stellar parameters derived from the analysis generally agree well with the spectral types of the two donors: O9I (IGR J17544-2619) and B0.5Iae (Vela X-1). The distance to the sources have been revised and also agree well with the estimations already available in the literature. In IGR J17544-2619 we are able to narrow the uncertainty to d = 3.0 +/- 0.2 kpc. From the stellar radius of the donor and its X-ray behavior, the eccentricity of IGR J17544-2619 is constrained to e < 0.25. The derived chemical abundances point to certain mixing during the lifetime of the donors. An important difference between the stellar winds of the two stars is their terminal velocities (v(infinity) = 1500 km s(-1) in IGR J17544-2619 and v(infinity) = 700 km s(-1) in Vela X-1), which have important consequences on the X-ray luminosity of these sources. Conclusions. The donors of IGR J17544-2619 and Vela X-1 have similar spectral types as well as similar parameters that physically characterize them and their spectra. In addition, the orbital parameters of the systems are similar too, with a nearly circular orbit and short orbital period. However, they show moderate differences in their stellar wind velocity and the spin period of their neutron star which has a strong impact on the X-ray luminosity of the sources. This specific combination of wind speed and pulsar spin favors an accretion regime with a persistently high luminosity in Vela X-1, while it favors an inhibiting accretion mechanism in IGR J17544-2619. Our study demonstrates that the relative wind velocity is critical in class determination for the HMXBs hosting a supergiant donor, given that it may shift the accretion mechanism from direct accretion to propeller regimes when combined with other parameters. KW - accretion, accretion disks KW - methods: observational KW - techniques: spectroscopic KW - stars: atmospheres KW - X-rays: binaries KW - stars: winds, outflows Y1 - 2016 U6 - https://doi.org/10.1051/0004-6361/201527551 SN - 1432-0746 VL - 591 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Hamaguchi, K. A1 - Oskinova, Lida A1 - Russell, C. M. P. A1 - Petre, R. A1 - Enoto, T. A1 - Morihana, K. A1 - Ishida, M. T1 - DISCOVERY OF RAPIDLY MOVING PARTIAL X-RAY ABSORBERS WITHIN GAMMA CASSIOPEIAE JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - detected six rapid X-ray spectral hardening events called "softness dips" in a similar to 100 ks observation in 2011. All the softness dip events show symmetric softness-ratio variations, and some of them have flat bottoms apparently due to saturation. The softness dip spectra are best described by either similar to 40% or similar to 70% partial covering absorption to kT similar to 12 keV plasma emission by matter with a neutral hydrogen column density of similar to(2-8) x 10(21) cm(-2), while the spectrum outside these dips is almost free of absorption. This result suggests the presence of two distinct X-ray-emitting spots in the.. Cas system, perhaps on a white dwarf (WD) companion with dipole mass accretion. The partial covering absorbers may be blobs in the Be stellar wind, the Be disk, or rotating around the WD companion. Weak correlations of the softness ratios to the hard X-ray flux suggest the presence of stable plasmas at kT similar to 0.9 and 5 keV, which may originate from the Be or WD winds. The formation of a Be star and WD binary system requires mass transfer between two stars; gamma Cas may have experienced such activity in the past. KW - blue stragglers KW - stars: emission-line, Be KW - stars: individual (gamma Cassiopeiae) KW - stars: winds, outflows KW - white dwarfs KW - X-rays: stars Y1 - 2016 U6 - https://doi.org/10.3847/0004-637X/832/2/140 SN - 0004-637X SN - 1538-4357 VL - 832 SP - 33 EP - 49 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Toala, Jesús Alberto A1 - Oskinova, Lida A1 - Gonzalez-Galan, Ana A1 - Guerrero, Martín A. A1 - Ignace, R. A1 - Pohl, Martin T1 - X-RAY OBSERVATIONS OF BOW SHOCKS AROUND RUNAWAY O STARS. THE CASE OF zeta OPH AND BD+43 degrees 3654 JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - Non-thermal radiation has been predicted within bow shocks around runaway stars by recent theoretical works. We present X-ray observations toward the runaway stars zeta Oph by Chandra and Suzaku and of BD+43 degrees 3654 by XMM-Newton to search for the presence of non-thermal X-ray emission. We found no evidence of non-thermal emission spatially coincident with the bow shocks; nonetheless, diffuse emission was detected in the vicinity of zeta Oph. After a careful analysis of its spectral characteristics, we conclude that this emission has a thermal nature with a plasma temperature of T approximate to 2 x 10(6) K. The cometary shape of this emission seems to be in line with recent predictions of radiation-hydrodynamic models of runaway stars. The case of BD+43 degrees 3654 is puzzling, as non-thermal emission has been reported in a previous work for this source. KW - stars: individual (zeta Oph, BD+43 degrees 3654) KW - stars: winds, outflows Y1 - 2016 U6 - https://doi.org/10.3847/0004-637X/821/2/79 SN - 0004-637X SN - 1538-4357 VL - 821 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Grinberg, Victoria A1 - Hell, Natalie A1 - El Mellah, Ileyk A1 - Neilsen, Joseph A1 - Sander, Andreas Alexander Christoph A1 - Leutenegger, Maurice A1 - Fürst, Felix A1 - Huenemoerder, David P. A1 - Kretschmar, Peter A1 - Kuehnel, Matthias A1 - Martinez-Nunez, Silvia A1 - Niu, Shu A1 - Pottschmidt, Katja A1 - Schulz, Norbert S. A1 - Wilms, Joern A1 - Nowak, Michael A. T1 - The clumpy absorber in the high-mass X-ray binary Vela X-1 JF - Astronomy and astrophysics : an international weekly journal N2 - Bright and eclipsing, the high-mass X-ray binary Vela X-1 offers a unique opportunity to study accretion onto a neutron star from clumpy winds of O/B stars and to disentangle the complex accretion geometry of these systems. In Chandra-HETGS spectroscopy at orbital phase similar to 0.25, when our line of sight towards the source does not pass through the large-scale accretion structure such as the accretion wake, we observe changes in overall spectral shape on timescales of a few kiloseconds. This spectral variability is, at least in part, caused by changes in overall absorption and we show that such strongly variable absorption cannot be caused by unperturbed clumpy winds of O/B stars. We detect line features from high and low ionization species of silicon, magnesium, and neon whose strengths and presence depend on the overall level of absorption. These features imply a co-existence of cool and hot gas phases in the system, which we interpret as a highly variable, structured accretion flow close to the compact object such as has been recently seen in simulations of wind accretion in high-mass X-ray binaries. KW - X-rays: individuals: Vela X-1 KW - X-rays: binaries KW - stars: winds, outflows KW - stars: massive Y1 - 2017 U6 - https://doi.org/10.1051/0004-6361/201731843 SN - 1432-0746 VL - 608 PB - EDP Sciences CY - Les Ulis ER -