TY - THES A1 - Müller, Hans-Georg T1 - Der Majuskelgebrauch im Deutschen BT - Groß- und Kleinschreibung theoretisch, empirisch, ontoge­netisch. T2 - Germanistische Linguistik ; 305 N2 - Die Arbeit stellt die Funktionsweise und den Erwerb der deutschen Groß- und Kleinschreibung auf theoretischer und empirischer Grundlage dar. Den Ausgangspunkt bildet eine textpragmatische Verallgemeinerung bisheriger graphematischer Ansätze, die zu einem übergreifenden Modell des Majuskelgebrauchs im Deutschen erweitert werden und dabei auch nicht-orthografische Teilbereiche einschließen (Versalsatz, Kapitälchen, Binnenmajuskel etc.). Im empirischen Teil der Arbeit werden die orthografischen Leistungsdaten von ca. 5.700 Probanden verschiedener Altersklassen (4. Klasse bis Erwachsenenbildung) untersucht und zu einem allgemeinen Erwerbsmodell der Groß- und Kleinschreibung ausgebaut. Mit Hilfe neuronaler Netzwerksimulationen werden unterschiedliche Lernertypen unterschieden und Diskontinuitäten im Kompetenzerwerb nachgewiesen, die auf qualitative Strategiewechsel in der Ontogenese hindeuten. Den Abschluss bilden orthografiedidaktische und rechtschreibdiagnostische Reflexionen der Daten. KW - Rechtschreibung KW - Groß- und Kleinschreibung KW - Deutschdidaktik Y1 - 2016 SN - 978-3-11-046096-4 SN - 978-3-11-045796-4 U6 - https://doi.org/doi.org/10.1515/9783110460964 VL - 2016 PB - de Gruyter CY - Berlin ER - TY - THES A1 - Konrad-Schmolke, Matthias T1 - Thermodynamic and geochemical modeling in metamorphic geology T1 - Thermodynamische und geochemische Modellierungen in metamorpher Geologie N2 - Quantitative thermodynamic and geochemical modeling is today applied in a variety of geological environments from the petrogenesis of igneous rocks to the oceanic realm. Thermodynamic calculations are used, for example, to get better insight into lithosphere dynamics, to constrain melting processes in crust and mantle as well as to study fluid-rock interaction. The development of thermodynamic databases and computer programs to calculate equilibrium phase diagrams have greatly advanced our ability to model geodynamic processes from subduction to orogenesis. However, a well-known problem is that despite its broad application the use and interpretation of thermodynamic models applied to natural rocks is far from straightforward. For example, chemical disequilibrium and/or unknown rock properties, such as fluid activities, complicate the application of equilibrium thermodynamics. One major aspect of the publications presented in this Habilitationsschrift are new approaches to unravel dynamic and chemical histories of rocks that include applications to chemically open system behaviour. This approach is especially important in rocks that are affected by element fractionation due to fractional crystallisation and fluid loss during dehydration reactions. Furthermore, chemically open system behaviour has also to be considered for studying fluid-rock interaction processes and for extracting information from compositionally zoned metamorphic minerals. In this Habilitationsschrift several publications are presented where I incorporate such open system behaviour in the forward models by incrementing the calculations and considering changing reacting rock compositions during metamorphism. I apply thermodynamic forward modelling incorporating the effects of element fractionation in a variety of geodynamic and geochemical applications in order to better understand lithosphere dynamics and mass transfer in solid rocks. In three of the presented publications I combine thermodynamic forward models with trace element calculations in order to enlarge the application of geochemical numerical forward modeling. In these publications a combination of thermodynamic and trace element forward modeling is used to study and quantify processes in metamorphic petrology at spatial scales from µm to km. In the thermodynamic forward models I utilize Gibbs energy minimization to quantify mineralogical changes along a reaction path of a chemically open fluid/rock system. These results are combined with mass balanced trace element calculations to determine the trace element distribution between rock and melt/fluid during the metamorphic evolution. Thus, effects of mineral reactions, fluid-rock interaction and element transport in metamorphic rocks on the trace element and isotopic composition of minerals, rocks and percolating fluids or melts can be predicted. One of the included publications shows that trace element growth zonations in metamorphic garnet porphyroblasts can be used to get crucial information about the reaction path of the investigated sample. In order to interpret the major and trace element distribution and zoning patterns in terms of the reaction history of the samples, we combined thermodynamic forward models with mass-balance rare earth element calculations. Such combined thermodynamic and mass-balance calculations of the rare earth element distribution among the modelled stable phases yielded characteristic zonation patterns in garnet that closely resemble those in the natural samples. We can show in that paper that garnet growth and trace element incorporation occurred in near thermodynamic equilibrium with matrix phases during subduction and that the rare earth element patterns in garnet exhibit distinct enrichment zones that fingerprint the minerals involved in the garnet-forming reactions. In two of the presented publications I illustrate the capacities of combined thermodynamic-geochemical modeling based on examples relevant to mass transfer in subduction zones. The first example focuses on fluid-rock interaction in and around a blueschist-facies shear zone in felsic gneisses, where fluid-induced mineral reactions and their effects on boron (B) concentrations and isotopic compositions in white mica are modeled. In the second example, fluid release from a subducted slab and associated transport of B and variations in B concentrations and isotopic compositions in liberated fluids and residual rocks are modeled. I show that, combined with experimental data on elemental partitioning and isotopic fractionation, thermodynamic forward modeling unfolds enormous capacities that are far from exhausted. In my publications presented in this Habilitationsschrift I compare the modeled results to geochemical data of natural minerals and rocks and demonstrate that the combination of thermodynamic and geochemical models enables quantification of metamorphic processes and insights into element cycling that would have been unattainable so far. Thus, the contributions to the science community presented in this Habilitatonsschrift concern the fields of petrology, geochemistry, geochronology but also ore geology that all use thermodynamic and geochemical models to solve various problems related to geo-materials. N2 - Große Teile des Planeten auf dem wir leben sind für direkte Beobachtungen unzugänglich. Dieser Umstand umfasst nicht nur eine räumliche Komponente, so wie dies z.B. in den Tiefseegräben der Ozeane oder im Erdinneren der Fall ist sondern auch eine zeitliche Komponente, da viele für uns lebenswichtigen Prozesse, wie z.B. die Verschiebung der Kontinentalplatten, in für uns kaum beobachtbaren Raten stattfinden. Daher sind sogenannte Proxies, d.h. Archive in denen Informationen über die untersuchten Prozesse aus der längeren Vergangenheit gespeichert sind für die Geowissenschaften von sehr großer Bedeutung. Der wohl bekannteste Proxy ist zur Zeit CO2, dessen Konzentration in der Atmosphäre mit der Lufttemperatur korreliert wird. Als Archive für diesen Proxy dienen in der Regel Luftblasen in den Schichten der Eisschilde. Ist der Prozess bekannt, der den Proxy mit der gesuchten Information verbindet, im Falle von CO2 ist das der weitgehend bekannte sogenannte Treibhaus-Effekt, der die Oberflächentemperatur auf der Erde kontrolliert, kann man aus den Daten der Vergangenheit auf die Zukunft rückschließen. Wichtig ist dabei natürlich, dass der Prozess, der den Proxy kontrolliert genau bekannt ist, denn sonst führen dessen Messungen und die Interpretation der Daten zu falschen Rückschlüssen. In der von mir vorgelegten Habilitationsschrift geht es um Prozesse, die bestimmte Proxies in Gesteinen kontrollieren und darum, aus den Messungen der Proxies Rückschlüsse über Prozesse machen zu können, die weit außerhalb unseres direkt beobachtbaren Raumes liegen. Bei den untersuchten Prozessen handelt es sich um die sogenannte Lithosphärendynamik, die Bewegung der Gesteine in den obersten etwa 100km unseres Planeten. Diese Dynamik und die damit verbundenen Massenbewegungen sind weder räumlich noch zeitlich gut zu beobachten, die Prozesse laufen meist in größeren Tiefen und im Maßstab von Millionen von Jahren ab, sind aber dennoch für die Menschen von größter Bedeutung, da sie für Erdbeben, Vulkanausbrüche aber auch für die Lagerstättenbildung verantwortlich sind. Bewegungen der Gesteine in der Lithosphäre gehen mit Druck- und Temperaturänderungen in den Gesteinen einher. Die Gesteine versuchen sich diesen Änderungen anzupassen, was durch chemische Veränderungen in den Mineralen aus denen die Gesteine bestehen, geschieht. Solche Veränderungen infolge der Anpassung an sich ändernde Umweltbedingungen sind uns allen bekannt: Eis schmilzt, wenn die Umgebungstemperatur über dem Gefrierpunkt liegt und die Kraft, die wir im Verbrennungsmotor aus der chemischen Reaktion zwischen Benzin und Luft gewinnen setzen wir in Bewegung um. Die Berechnung solcher chemischer Anpassungen an sich ändernde Umgebungsbedingungen erfolgt mit Hilfe der Thermodynamik. Mit thermodynamischen Modellen können wir voraussagen welche Veränderungen in einem chemischen System auftreten, wenn sich die Umgebungsbedingungen ändern. Im Bezug auf Gesteine bedeutet dies, dass wir die chemische Zusammensetzung der Minerale bei bestimmten Druck und Temperaturbedingungen voraussagen können und umgekehrt auch aus der chemischen Zusammensetzung der Minerale auf die Druck- und Temperaturbedingungen bei ihrer Entstehung rückschließen können. Einige Minerale, wie z.B. Granat oder Feldspat weisen in Gesteinen oft eine chemische Zonierung auf, d.h. wie die Jahresringe in einem Baum haben solche Minerale konzentrische Anwachssäume, die sich in ihrer chemischen Zusammensetzung unterscheiden und so ein Archiv über die erfahrenen Druck- und Temperaturveränderungen in der Geschichte des Gesteins darstellen. Zur Interpretation dieser Zonierungen bedarf es komplexer thermodynamischer Modellierungen mit denen ich mich in den hier zusammengefassten publizierten Arbeiten beschäftigt habe. In den in dieser Habilitationsschrift zusammengefassten Arbeiten arbeite ich vor allem heraus, dass sowohl die Haupt- als auch die Spurenelementzonierungen in den Mineralen Granat und Hellglimmer hervorragende Indikatoren für Elementtransportprozesse in den Gesteinen sind. In Granat können Haupt- und Seltenerdelementzonierungen herangezogen werden um Elementfraktionierungsprozesse während der Gesteinsentwicklung zu detektieren. In den Hellglimmern ist die Konzentration und isotopische Zusammensetzung von Bor indikativ für eine Fluid-Gesteins-Wechselwirkung. Ich zeige, dass mit von mir und meinen Co-Autoren entwickelten thermodynamisch-geochemischen Modellen solche Elementtransportprozesse quantifiziert werden können. In den hier vorgelegten Arbeiten verwende ich solche numerischen Modelle um Prozesse vom µm bis km Maßstab zu quantifizieren. KW - geology KW - petrology KW - thermodynamic modelling KW - Geologie KW - Petrologie KW - thermodynamische Modellierungen Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-101805 ER - TY - THES A1 - Habicht, Klaus T1 - Neutron-resonance spin-echo spectroscopy BT - a high resolution look at dispersive excitations Y1 - 2016 ER - TY - THES A1 - Kersten, Birgit T1 - Proteom-weite Studien zur Phosphorylierung pflanzlicher Proteine mittels Proteinmikroarrays und Bioinformatik Y1 - 2016 ER - TY - THES A1 - Amaro-Seoane, Pau T1 - Dense stellar systems and massive black holes T1 - Dichte stellare Systeme und massive Schwarze Löcher BT - sources of gravitational radiation and tidal disruptions BT - Quellen von Gravitationsstrahlung und Gezeiten-Sternzerissereignissen N2 - Gravity dictates the structure of the whole Universe and, although it is triumphantly described by the theory of General Relativity, it is the force that we least understand in nature. One of the cardinal predictions of this theory are black holes. Massive, dark objects are found in the majority of galaxies. Our own galactic center very contains such an object with a mass of about four million solar masses. Are these objects supermassive black holes (SMBHs), or do we need alternatives? The answer lies in the event horizon, the characteristic that defines a black hole. The key to probe the horizon is to model the movement of stars around a SMBH, and the interactions between them, and look for deviations from real observations. Nuclear star clusters harboring a massive, dark object with a mass of up to ~ ten million solar masses are good testbeds to probe the event horizon of the potential SMBH with stars. The channel for interactions between stars and the central MBH are the fact that (a) compact stars and stellar-mass black holes can gradually inspiral into the SMBH due to the emission of gravitational radiation, which is known as an “Extreme Mass Ratio Inspiral” (EMRI), and (b) stars can produce gases which will be accreted by the SMBH through normal stellar evolution, or by collisions and disruptions brought about by the strong central tidal field. Such processes can contribute significantly to the mass of the SMBH. These two processes involve different disciplines, which combined will provide us with detailed information about the fabric of space and time. In this habilitation I present nine articles of my recent work directly related with these topics. N2 - Die Gravitation bestimmt die Struktur des ganzen Universums und ist, obwohl sie mit großem Erfolg durch die Theorie der Allgemeinen Relativitätstheorie beschrieben wird, die am wenigsten verstandene Kraft in der Natur. Eine der grundsätzlichsten Vorhersagen dieser Theorie sind Schwarze Löcher. Massive, dunkle Objekte befinden sich in einem Großteil aller Galaxien. Das Zentrum unserer eigenen Galaxis enthält solch ein Objekt mit einer Masse von etwa vier Millionen Sonnenmassen. Sind diese Objekte supermassive Schwarze Löcher oder brauchen wir Alternativen? Die Antwort liegt im Ereignishorizont, der Eigenschaft, die ein Schwarzes Loch definiert. Der Schlüssel um den Ereignishorizont zu untersuchen ist, die Bewegungen der Sterne um eine Supermassives Schwarzes Loch zu modellieren, sowie deren Interaktionen, und nach Abweichungen von unseren Erwartungen in echten Beobachtungen zu suchen. Zentrale Sternhaufen, die ein massives, dunkles Objekt mit einer Masse bis zu ∼ zehn Millionen Sonnenmassen enthalten, sind gute Laborarien um den Ereignishorizont eines möglichen supermassiven Schwarzen Lochs mit Hilfe von Sternen zu untersuchen. Die Kanäle für mögliche Wechselwirkungen zwischen Sternen und einem zentralen Schwarzen Loch sind: (a) Kompakte Sternreste und stellare Schwarze Löcher können durch die Emission von Gravitationswellen allmählich auf spiralförmigen Orbits in das supermassive Schwarze Loch fallen, was als “Extreme Mass Ratio Inspiral” (EMRI) bezeichent wird. (b) Durch normale Sternentwicklung (Sternwinde) sowie durch Sternkollisionen oder Zerstörung von Sternen im starken zentralen Gezeitenfeld kann Gas freigesetzt werden, welches anschließend vom supermassiven Schwarzen Loch akkretiert werden kann. Solche Prozesse können wesentlich zur Masse eines Supermassiven Schwarzen Lochs beitragen. Die beiden Prozesse (a und b) beinhalten verschiedene astrophysikalische Aspekte, welche uns in ihrer Kombination mit detaillierter Information über die Beschaffenheit der Raumzeit versorgen. In dieser Habilitationsschrift präsentiere ich neun Artikel aus meiner jüngeren Forschungsarbeit, welche direkt Probleme aus diesen Themenbereichen behandeln. KW - stellar dynamics KW - massive black holes KW - gravitational waves KW - general relativity KW - Stellardynamik KW - massive Schwarze Löcher KW - Gravitationswellen KW - allgemeine Relativitätstheorie Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-95439 ER - TY - THES A1 - Lindemann, Anke T1 - Briefe von und an Friedrich Eberhard von Rochow BT - Briefe 1759 bis 1805 : 2 Teile Y1 - 2016 ER -