TY - JOUR A1 - Streich, Rita A1 - Becken, Michael A1 - Ritter, Oliver T1 - 2.5D controlled-source EM modeling with general 3D source geometries JF - Geophysics N2 - Most 2.5D controlled-source electromagnetic (CSEM) modeling algorithms presented to date explicitly consider only sources that are point dipoles oriented parallel or perpendicular to the direction of constant conductivity. This makes simulations of complex source geometries expensive, requiring separate evaluations of many point dipole fields, and thus limits the practical applicability of such schemes for simulating and interpreting field data. We present a novel 2.5D CSEM modeling scheme that overcomes this limitation and permits efficient simulations of sources with general shape and orientation by evaluating fields for the entire source at once. We accommodate general sources by using a secondary field approach, in which primary fields are computed for the general source and a 1D background conductivity model. To carry out the required Fourier transforms between space and wavenumber domain using the same fast cosine and sine transform filters as in conventional algorithms, we split the primary and secondary fields into their symmetric and antisymmetric parts. For complex 3D source geometries, this approach is significantly more efficient than previous 2.5D algorithms. Our finite-difference algorithm also includes novel approaches for divergence correction at low frequencies and EM field interpolation across conductivity discontinuities. We describe the modeling scheme and demonstrate its accuracy and efficiency by comparisons of 2.5D-simulated data with 1D and 3D results. Y1 - 2011 U6 - https://doi.org/10.1190/GEO2011-0111.1 SN - 0016-8033 VL - 76 IS - 6 SP - F387 EP - F393 PB - Society of Exploration Geophysicists CY - Tulsa ER - TY - JOUR A1 - Wiederkehr, Michael A1 - Bousquet, Romain A1 - Ziemann, Martin Andreas A1 - Berger, Alfons A1 - Schmid, Stefan M. T1 - 3-D assessment of peak-metamorphic conditions by Raman spectroscopy of carbonaceous material an example from the margin of the Lepontine dome (Swiss Central Alps) JF - International journal of earth sciences N2 - This study monitors regional changes in the crystallinity of carbonaceous matter (CM) by applying Micro-Raman spectroscopy to a total of 214 metasediment samples (largely so-called Bundnerschiefer) dominantly metamorphosed under blueschist- to amphibolite-facies conditions. They were collected within the northeastern margin of the Lepontine dome and easterly adjacent areas of the Swiss Central Alps. Three-dimensional mapping of isotemperature contours in map and profile views shows that the isotemperature contours associated with the Miocene Barrow-type Lepontine metamorphic event cut across refolded nappe contacts, both along and across strike within the northeastern margin of the Lepontine dome and adjacent areas. Further to the northeast, the isotemperature contours reflect temperatures reached during the Late Eocene subduction-related blueschist-facies event and/or during subsequent near-isothermal decompression; these contours appear folded by younger, large-scale post-nappe-stacking folds. A substantial jump in the recorded maximum temperatures across the tectonic contact between the frontal Adula nappe complex and surrounding metasediments indicates that this contact accommodated differential tectonic movement of the Adula nappe with respect to the enveloping Bundnerschiefer after maximum temperatures were reached within the northern Adula nappe, i.e. after Late Eocene time. KW - HP-metamorphism KW - Barrovian metamorphism KW - Graphitization KW - Metasediments KW - Micro-Raman spectroscopy KW - Central Alps Y1 - 2011 U6 - https://doi.org/10.1007/s00531-010-0622-2 SN - 1437-3254 VL - 100 IS - 5 SP - 1029 EP - 1063 PB - Springer CY - New York ER - TY - JOUR A1 - Lappe, Michael A1 - Kallmeyer, Jens T1 - A cell extraction method for oily sediments JF - Frontiers in microbiology N2 - Hydrocarbons can be found in many different habitats and represent an important carbon source for microbes. As fossil fuels, they are also an important economical resource and through natural seepage or accidental release they can be major pollutants. DNA-specific stains and molecular probes bind to hydrocarbons, causing massive background fluorescence, thereby hampering cell enumeration. The cell extraction procedure of Kallmeyer et al. (2008) separates the cells from the sediment matrix. In principle, this technique can also be used to separate cells from oily sediments, but it was not originally optimized for this application. Here we present a modified extraction method in which the hydrocarbons are removed prior to cell extraction. Due to the reduced background fluorescence the microscopic image becomes clearer, making cell identification, and enumeration much easier. Consequently, the resulting cell counts from oily samples treated according to our new protocol are significantly higher than those treated according to Kallmeyer et al. (2008). We tested different amounts of a variety of solvents for their ability to remove hydrocarbons and found that n-hexane and in samples containing more mature oils methanol, delivered the best results. However, as solvents also tend to lyse cells, it was important to find the optimum solvent to sample ratio, at which hydrocarbon extraction is maximized and cell lysis minimized. A volumetric ratio of 1:2-1:5 between a formalin-fixed sediment slurry and solvent delivered highest cell counts. Extraction efficiency was around 30-50% and was checked on both oily samples spiked with known amounts of E. coli cells and oil-free samples amended with fresh and biodegraded oil. The method provided reproducible results on samples containing very different kinds of oils with regard to their degree of biodegradation. For strongly biodegraded oil MeOH turned out to be the most appropriate solvent, whereas for less biodegraded samples n-hexane delivered best results. KW - cell enumeration KW - hydrocarbons KW - cell separation KW - subsurface microbiology Y1 - 2011 U6 - https://doi.org/10.3389/fmicb.2011.00233 SN - 1664-302X VL - 2 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Maerker, Michael A1 - Pelacani, Samanta A1 - Schroeder, Boris T1 - A functional entity approach to predict soil erosion processes in a small Plio-Pleistocene Mediterranean catchment in Northern Chianti, Italy JF - Geomorphology : an international journal on pure and applied geomorphology N2 - In this paper we evaluate different methods to predict soil erosion processes. We derived different layers of predictor variables for the study area in the Northern Chianti, Italy, describing the soil-lithologic complex, land use, and topographic characteristics. For a subcatchment of the Orme River, we mapped erosion processes by interpreting aerial photographs and field observations. These were classified as erosional response units (ERU), i.e. spatial areas of homogeneous erosion processes. The ERU were used as the response variable in the soil erosion modelling process. We applied two models i) bootstrap aggregation (Random Forest: RF), and ii) stochastic gradient boosting (TreeNet: TN) to predict the potential spatial distribution of erosion processes for the entire Orme River catchment. The models are statistically evaluated using training data and a set of performance parameters such as the area under the receiver operating characteristic curve (AUC), Cohen's Kappa, and pseudo R2. Variable importance and response curves provide further insight into controlling factors of erosion. Both models provided good performance in terms of classification and calibration; however, TN outperformed RF. Similar classes such as active and inactive landslides can be discriminated and well interpreted by considering response curves and relative variable importance. The spatial distribution of the predicted erosion susceptibilities generally follows topographic constraints and is similar for both models. Hence, the model-based delineation of ERU on the basis of soil and terrain information is a valuable tool in geomorphology; it provides insights into factors controlling erosion processes and may allow the extrapolation and prediction of erosion processes in unsurveyed areas. KW - Erosion processes KW - Boostrap aggregation KW - Stochastic gradient boosting KW - Spatially explicit prediction KW - Tuscany KW - Italy Y1 - 2011 U6 - https://doi.org/10.1016/j.geomorph.2010.10.022 SN - 0169-555X VL - 125 IS - 4 SP - 530 EP - 540 PB - Elsevier CY - Amsterdam ER - TY - THES A1 - Zhang, Zhuodong T1 - A regional scale study of wind erosion in the Xilingele grassland based on computational fluid dynamics Y1 - 2011 CY - Potsdam ER - TY - JOUR A1 - Ballato, Paolo A1 - Uba, Cornelius Eji A1 - Landgraf, Angela A1 - Strecker, Manfred A1 - Sudo, Masafumi A1 - Stockli, Daniel F. A1 - Friedrich, Anke M. A1 - Tabatabaei, Saeid H. T1 - Arabia-Eurasia continental collision insights from late Tertiary foreland-basin evolution in the Alborz Mountains, northern Iran JF - Geological Society of America bulletin N2 - A poorly understood lag time of 15-20 m.y. exists between the initial Arabia-Eurasia continental collision in late Eocene to early Oligocene time and the acceleration of tectonic and sedimentary processes across the collision zone in the early to late Miocene. The late Eocene to Miocene-Pliocene clastic and shallow-marine sedimentary rocks of the Kond, Eyvanekey, and Semnan Basins in the Alborz Mountains (northern Iran) offer the possibility to track the evolution of this orogen in the framework of collision processes. A transition from volcaniclastic submarine deposits to shallow-marine evaporites and terrestrial sediments occurred shortly after 36 Ma in association with reversals in sediment provenance, strata tilting, and erosional unroofing. These events followed the termination of subduction arc magmatism and marked a changeover from an extensional to a contractional regime in response to initiation of continental collision with the subduction of stretched Arabian lithosphere. This early stage of collision produced topographic relief associated with shallow foreland basins, suggesting that shortening and tectonic loading occurred at low rates. Starting from the early Miocene (17.5 Ma), flexural subsidence in response to foreland basin initiation occurred. Fast sediment accumulation rates and erosional unroofing trends point to acceleration of shortening by the early Miocene. We suggest that the lag time between the initiation of continental collision (36 Ma) and the acceleration of regional deformation (20-17.5 Ma) reflects a two-stage collision process, involving the "soft" collision of stretched lithosphere at first and "hard" collision following the arrival of unstretched Arabian continental litho sphere in the subduction zone. Y1 - 2011 U6 - https://doi.org/10.1130/B30091.1 SN - 0016-7606 VL - 123 IS - 1-2 SP - 106 EP - 131 PB - American Institute of Physics CY - Boulder ER - TY - JOUR A1 - Benmehdi, Sabah A1 - Makarava, Natallia A1 - Benhamidouche, N. A1 - Holschneider, Matthias T1 - Bayesian estimation of the self-similarity exponent of the Nile River fluctuation JF - Nonlinear processes in geophysics N2 - The aim of this paper is to estimate the Hurst parameter of Fractional Gaussian Noise (FGN) using Bayesian inference. We propose an estimation technique that takes into account the full correlation structure of this process. Instead of using the integrated time series and then applying an estimator for its Hurst exponent, we propose to use the noise signal directly. As an application we analyze the time series of the Nile River, where we find a posterior distribution which is compatible with previous findings. In addition, our technique provides natural error bars for the Hurst exponent. Y1 - 2011 U6 - https://doi.org/10.5194/npg-18-441-2011 SN - 1023-5809 VL - 18 IS - 3 SP - 441 EP - 446 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Schmelzbach, C. A1 - Scherbaum, Frank A1 - Tronicke, Jens A1 - Dietrich, P. T1 - Bayesian frequency-domain blind deconvolution of ground-penetrating radar data JF - Journal of applied geophysics N2 - Enhancing the resolution and accuracy of surface ground-penetrating radar (GPR) reflection data by inverse filtering to recover a zero-phased band-limited reflectivity image requires a deconvolution technique that takes the mixed-phase character of the embedded wavelet into account. In contrast, standard stochastic deconvolution techniques assume that the wavelet is minimum phase and, hence, often meet with limited success when applied to GPR data. We present a new general-purpose blind deconvolution algorithm for mixed-phase wavelet estimation and deconvolution that (1) uses the parametrization of a mixed-phase wavelet as the convolution of the wavelet's minimum-phase equivalent with a dispersive all-pass filter, (2) includes prior information about the wavelet to be estimated in a Bayesian framework, and (3) relies on the assumption of a sparse reflectivity. Solving the normal equations using the data autocorrelation function provides an inverse filter that optimally removes the minimum-phase equivalent of the wavelet from the data, which leaves traces with a balanced amplitude spectrum but distorted phase. To compensate for the remaining phase errors, we invert in the frequency domain for an all-pass filter thereby taking advantage of the fact that the action of the all-pass filter is exclusively contained in its phase spectrum. A key element of our algorithm and a novelty in blind deconvolution is the inclusion of prior information that allows resolving ambiguities in polarity and timing that cannot be resolved using the sparseness measure alone. We employ a global inversion approach for non-linear optimization to find the all-pass filter phase values for each signal frequency. We tested the robustness and reliability of our algorithm on synthetic data with different wavelets, 1-D reflectivity models of different complexity, varying levels of added noise, and different types of prior information. When applied to realistic synthetic 2-D data and 2-D field data, we obtain images with increased temporal resolution compared to the results of standard processing. KW - Deconvolution KW - Inverse filtering KW - Ground penetrating radar KW - GPR KW - Data processing KW - Vertical resolution Y1 - 2011 U6 - https://doi.org/10.1016/j.jappgeo.2011.08.010 SN - 0926-9851 VL - 75 IS - 4 SP - 615 EP - 630 PB - Elsevier CY - Amsterdam ER - TY - THES A1 - Blaser, Lilian T1 - Bayesian networks for tsunami early warning Y1 - 2011 CY - Potsdam ER - TY - JOUR A1 - Heistermann, Maik A1 - Kneis, David T1 - Benchmarking quantitative precipitation estimation by conceptual rainfall-runoff modeling JF - Water resources research N2 - Hydrologic modelers often need to know which method of quantitative precipitation estimation (QPE) is best suited for a particular catchment. Traditionally, QPE methods are verified and benchmarked against independent rain gauge observations. However, the lack of spatial representativeness limits the value of such a procedure. Alternatively, one could drive a hydrological model with different QPE products and choose the one which best reproduces observed runoff. Unfortunately, the calibration of conceptual model parameters might conceal actual differences between the QPEs. To avoid such effects, we abandoned the idea of determining optimum parameter sets for all QPE being compared. Instead, we carry out a large number of runoff simulations, confronting each QPE with a common set of random parameters. By evaluating the goodness-of-fit of all simulations, we obtain information on whether the quality of competing QPE methods is significantly different. This knowledge is inferred exactly at the scale of interest-the catchment scale. We use synthetic data to investigate the ability of this procedure to distinguish a truly superior QPE from an inferior one. We find that the procedure is prone to failure in the case of linear systems. However, we show evidence that in realistic (nonlinear) settings, the method can provide useful results even in the presence of moderate errors in model structure and streamflow observations. In a real-world case study on a small mountainous catchment, we demonstrate the ability of the verification procedure to reveal additional insights as compared to a conventional cross validation approach. Y1 - 2011 U6 - https://doi.org/10.1029/2010WR009153 SN - 0043-1397 VL - 47 IS - 23 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Gevers, Jana A1 - Hoye, Toke Thomas A1 - Topping, Chris John A1 - Glemnitz, Michael A1 - Schroeder, Boris T1 - Biodiversity and the mitigation of climate change through bioenergy impacts of increased maize cultivation on farmland wildlife JF - Global change biology : Bioenergy N2 - The public promotion of renewable energies is expected to increase the number of biogas plants and stimulate energy crops cultivation (e. g. maize) in Germany. In order to assess the indirect effects of the resulting land-use changes on biodiversity, we developed six land-use scenarios and simulated the responses of six farmland wildlife species with the spatially explicit agent-based model system ALMaSS. The scenarios differed in composition and spatial configuration of arable crops. We implemented scenarios where maize for energy production replaced 15% and 30% of the area covered by other cash crops. Biogas maize farms were either randomly distributed or located within small or large aggregation clusters. The animal species investigated were skylark (Alauda arvensis), grey partridge (Perdix perdix), European brown hare (Lepus europaeus), field vole (Microtus agrestis), a linyphiid spider (Erigone atra) and a carabid beetle (Bembidion lampros). The changes in crop composition had a negative effect on the population sizes of skylark, partridge and hare and a positive effect on the population sizes of spider and beetle and no effect on the population size of vole. An aggregated cultivation of maize amplified these effects for skylark. Species responses to changes in the crop composition were consistent across three differently structured landscapes. Our work suggests that with the compliance to some recommendations, negative effects of biogas-related land-use change on the populations of the six representative farmland species can largely be avoided. KW - agriculture KW - ALMaSS KW - biogas KW - farmland biodiversity KW - land-use change KW - maize KW - spatially explicit agent-based modeling Y1 - 2011 U6 - https://doi.org/10.1111/j.1757-1707.2011.01104.x SN - 1757-1693 VL - 3 IS - 6 SP - 472 EP - 482 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Wienhöfer, Jan A1 - Lindenmaier, Falk A1 - Zehe, Erwin T1 - Challenges in understanding the hydrologic controls on the mobility of slow-moving landslides JF - Vadose zone journal N2 - Slow-moving landslides are a wide-spread type of active mass movement, can cause severe damages to infrastructure, and may be a precursor of sudden catastrophic slope failures. Pore-water pressure is commonly regarded as the most important among a number of possible factors controlling landslide velocity. We used high-resolution monitoring data to explore the relations of landslide mobility and hydrologic processes at the Heumoser landslide in Austria, which is characterized by continuous slow movement along a shear zone. Movement rates showed a seasonality that was associated with elevated pore-water pressures. Pore pressure monitoring revealed a system of confined and separated aquifers with differing dynamics. Analysis of a simple infinite slope mobility model showed that small variations in parameters, along with measured pore pressure dynamics, provided a perfect match to our observations. Modeling showed a stabilizing effect of snow cover due to the additional load. This finding was supported by a multiple regression model, which further suggested that effective pore pressures at the slip surface were partially differing from the borehole observations and were related to preferential infiltration and subsurface flow in adjacent areas. It appears that in a setting like the Heumoser landslide, hydrologic processes delicately influence slope mobility through their control on pore pressure dynamics and the weight of the landslide body, which challenges observation and modeling. Moreover, it appears that their simplicity, and especially their high sensitivity to parameter variations, limits the conclusions that can be drawn from infinite slope models. Y1 - 2011 U6 - https://doi.org/10.2136/vzj2009.0182 SN - 1539-1663 VL - 10 IS - 2 SP - 496 EP - 511 PB - Soil Science Society of America CY - Madison ER - TY - JOUR A1 - Daniel, G. A1 - Prono, E. A1 - Renard, F. A1 - Thouvenot, F. A1 - Hainzl, Sebastian A1 - Marsan, D. A1 - Helmstetter, A. A1 - Traversa, P. A1 - Got, J. L. A1 - Jenatton, L. A1 - Guiguet, R. T1 - Changes in effective stress during the 2003-2004 Ubaye seismic swarm, France JF - Journal of geophysical research : Solid earth N2 - We study changes in effective stress (normal stress minus pore pressure) that occurred in the French Alps during the 2003-2004 Ubaye earthquake swarm. Two complementary data sets are used. First, a set of 974 relocated events allows us to finely characterize the shape of the seismogenic area and the spatial migration of seismicity during the crisis. Relocations are performed by a double-difference algorithm. We compute differences in travel times at stations both from absolute picking times and from cross-correlation delays of multiplets. The resulting catalog reveals a swarm alignment along a single planar structure striking N130 degrees E and dipping 80 degrees W. This relocated activity displays migration properties consistent with a triggering by a diffusive fluid overpressure front. This observation argues in favor of a deep-seated fluid circulation responsible for a significant part of the seismic activity in Ubaye. Second, we analyze time series of earthquake detections at a single seismological station located just above the swarm. This time series forms a dense chronicle of +16,000 events. We use it to estimate the history of effective stress changes during this sequence. For this purpose we model the rate of events by a stochastic epidemic-type aftershock sequence model with a nonstationary background seismic rate lambda(0)(t). This background rate is estimated in discrete time windows. Window lengths are determined optimally according to a new change-point method on the basis of the interevent times distribution. We propose that background events are triggered directly by a transient fluid circulation at depth. Then, using rate-and-state constitutive friction laws, we estimate changes in effective stress for the observed rate of background events. We assume that changes in effective stress occurred under constant shear stressing rate conditions. We finally obtain a maximum change in effective stress close to -8 MPa, which corresponds to a maximum fluid overpressure of about 8 MPa under constant normal stress conditions. This estimate is in good agreement with values obtained from numerical modeling of fluid flow at depth, or with direct measurements reported from fluid injection experiments. Y1 - 2011 U6 - https://doi.org/10.1029/2010JB007551 SN - 2169-9313 SN - 2169-9356 VL - 116 IS - 4 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Kaiser, Bjoern Onno A1 - Cacace, Mauro A1 - Scheck-Wenderoth, Magdalena A1 - Lewerenz, Bjoern T1 - Characterization of main heat transport processes in the Northeast German Basin constraints from 3-D numerical models JF - Geochemistry, geophysics, geosystems N2 - To investigate and quantify main physical heat driving processes affecting the present-day subsurface thermal field, we study a complex geological setting, the Northeast German Basin (NEGB). The internal geological structure of the NEGB is characterized by the presence of a relatively thick layer of Permian Zechstein salt (up to 5000 m), which forms many salt diapirs and pillows locally reaching nearly the surface. By means of three-dimensional numerical simulations we explore the role of heat conduction, pressure, and density driven groundwater flow as well as fluid viscosity related effects. Our results suggest that the regional temperature distribution within the basin results from interactions between regional pressure forces as driven by topographic gradients and thermal diffusion locally enhanced by thermal conductivity contrasts between the different sedimentary rocks with the highly conductive salt playing a prominent role. In contrast, buoyancy forces triggered by temperature-dependent fluid density variations are demonstrated to affect only locally the internal thermal configuration. Locations, geometry, and wavelengths of convective thermal anomalies are mainly controlled by the permeability field and thickness values of the respective geological layers. KW - advection KW - convection KW - coupled fluid and heat transport KW - numerical simulations KW - Northeast German Basin KW - salt structures Y1 - 2011 U6 - https://doi.org/10.1029/2011GC003535 SN - 1525-2027 VL - 12 IS - 13 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Schlunegger, Fritz A1 - Norton, Kevin P. A1 - Zeilinger, Gerold T1 - Climatic forcing on channel profiles in the eastern cordillera of the Coroico Region, Bolivia JF - The journal of geology N2 - Orographic precipitation has a large impact on channel morphology and rock uplift via a positive feedback to erosion. We show that in the Eastern Cordillera of Bolivia, channel concavities reach their highest values where annual precipitation increases in the downstream direction, exceeding 3000 mm. The steepest channels are upstream of this zone of high concavity, where precipitation rates are <1000 mm yr(-1). Channels exhibit graded forms both upstream and downstream of this transient reach. We conclude that the prolonged effect of orographic erosion and related tectonic uplift is the preservation of channels with extreme concavities in the Eastern Cordillera. Y1 - 2011 U6 - https://doi.org/10.1086/657407 SN - 0022-1376 VL - 119 IS - 1 SP - 97 EP - 107 PB - Univ. of Chicago Press CY - Chicago ER - TY - THES A1 - Pourteau, Amaury T1 - Closure of the Neotethys Ocean in Anatolia : structural, petrologic and geochronologic insights from low-grade high-pressure metasediments, Afyon Zone T1 - Die Schließung des Neotethyschen-Ozeans in Anatolien : strukturelle, petrologische und geochronologische Erkenntnisse von niedriggradigen hochdruckmetamorphen Sedimenten, Afyon-Zone (Türkei) N2 - The complete consumption of the oceanic domain of a tectonic plate by subduction into the upper mantle results in continent subduction, although continental crust is typically of lower density than the upper mantle. Thus, the sites of former oceanic domains (named suture zones) are generally decorated with stratigraphic sequences deposited along continental passive margins that were metamorphosed under low-grade, high-pressure conditions, i.e., low temperature/depth ratios (< 15°C/km) with respect to geothermal gradients in tectonically stable regions. Throughout the Mesozoic and Cenozoic (i.e., since ca. 250 Ma), the Mediterranean realm was shaped by the closure of the Tethyan Ocean, which likely consisted in numerous oceanic domains and microcontinents. However, the exact number and position of Tethyan oceans and continents (i.e., the Tethyan palaeogeography) remains debated. This is particularly the case of Western and Central Anatolia, where a continental fragment was accreted to the southern composite margin of the Eurasia sometime between the Late Cretaceous and the early Cenozoic. The most frontal part of this microcontinent experienced subduction-related metamorphism around 85-80 Ma, and collision-related metamorphism affected more external parts around 35 Ma. This unsually-long period between subduction- and collision-related metamorphisms (ca. 50 Ma) in units ascribed to the same continental edge constitutes a crucial issue to address in order to unravel how Anatolia was assembled. The Afyon Zone is a tectono-sedimentary unit exposed south and structurally below the front high-pressure belt. It is composed of a Mesozoic sedimentary sequence deposited on top of a Precambrian to Palaeozoic continental substratum, which can be traced from Northwestern to southern Central Anatolia, along a possible Tethyan suture. Whereas the Afyon Zone was defined as a low-pressure metamorphic unit, high-pressure minerals (mainly Fe-Mg-carpholite in metasediments) were recently reported from its central part. These findings shattered previous conceptions on the tectono-metamorphic evolution of the Afyon Zone in particular, and of the entire region in general, and shed light on the necessity to revise the regional extent of subduction-related metamorphism by re-inspecting the petrology of poorly-studied metasediments. In this purpose, I re-evaluated the metamorphic evolution of the entire Afyon Zone starting from field observations. Low-grade, high-pressure mineral assemblages (Fe-Mg-carpholite and glaucophane) are reported throughout the unit. Well-preserved carpholite-chloritoid assemblages are useful to improve our understanding of mineral relations and transitions in the FeO-MgO-Al2O3-SiO2-H2O system during rocks’ travel down to depth (prograde metamorphism). Inspection of petrographic textures, minute variations in mineral composition and Mg-Fe distribution among carpholite-chloritoid assemblages documents multistage mineral growth, accompanied by a progressive enrichment in Mg, and strong element partitioning. Using an updated database of mineral thermodynamic properties, I modelled the pressure and temperature conditions that are consistent with textural and chemical observations. Carpholite-bearing assemblages in the Afyon Zone account for a temperature increase from 280 to 380°C between 0.9 and 1.1 GPa (equivalent to a depth of 30-35 km). In order to further constrain regional geodynamics, first radiometric ages were determined in close association with pressure-temperature estimates for the Afyon Zone, as well as two other tectono-sedimentary units from the same continental passive margin (the Ören and Kurudere-Nebiler Units from SW Anatolia). For age determination, I employed 40Ar-39Ar geochronology on white mica in carpholite-bearing rocks. For thermobarometry, a multi-equilibrium approach was used based on quartz-chlorite-mica and quartz-chlorite-chloritoid associations formed at the expense of carpholite-bearing assemblages, i.e., during the exhumation from the subduction zone. This combination allows deciphering the significance of the calculated radiometric ages in terms of metamorphic conditions. Results show that the Afyon Zone and the Ören Unit represent a latest Cretaceous high-pressure metamorphic belt, and the Kurudere-Nebiler Unit was affected by subduction-related metamorphism around 45 Ma and cooled down after collision-related metamorphism around 26 Ma. The results provided in the present thesis and from the literature allow better understanding continental amalgamation in Western Anatolia. It is shown that at least two distinct oceanic branches, whereas only one was previously considered, have closed during continuous north-dipping subduction between 92 and 45 Ma. Between 85-80 and 70-65 Ma, a narrow continental domain (including the Afyon Zone) was buried into a subduction zone within the northern oceanic strand. Parts of the subducted continent crust were exhumed while the upper oceanic plate was transported southwards. Subduction of underlying lithosphere persisted, leading to the closure of the southern oceanic branch and to subduct the front of a second continental domain (including the Kurudere-Nebiler Unit). This followed by a continental collisional stage characterized by the cease of subduction, crustal thicknening and the detachment of the subducting oceanic slab from the accreted continent lithosphere. The present study supports that in the late Mesozoic the East Mediterranean realm had a complex tectonic configuration similar to present Southeast Asia or the Caribbean, with multiple, coexisting oceanic basins, microcontinents and subduction zones. N2 - Kontinentale Subduktion resultiert aus dem Abtauchen des ozenanischen Gebiets einer tektonischen Platte in den Oberen Erdmantel. Dies geschieht obwohl die kontinentale Erdkruste normalerweise eine geringere Dichte besitzt als der Obere Erdmantel. Die Lage ehemaliger ozeanischer Gebiete (auch als Suturzonen bezeichnet) ist dementsprechend durch stratigraphische, sedimentäre Gesteinsabfolgen gekennzeichnet, die entlang des passiven Kontinentalrandes abgelagert wurden. Anschließend wurden diese Gesteine unter niedrigen Temperaturen und hohem Druck umgewandelt, auch niedrig-gradige Hochdruckmetamorphose genannt. Während der gesamten Zeitspanne des Mesozoikums und Känozoikums (seit etwa 250 Millionen Jahren bis heute) wurde der mediterrane Raum durch die kontinuierliche Schließung des Tethyschen Ozeans (dem heutigen Mittelmeer) geprägt, der vermutlich in zahlreichen kleineren Ozeanen und Mikrokontinenten aufgeteilt war. Dennoch bleiben die genaue Anzahl und Lage der tethyschen Ozeane und Kontinente (die Paläogeographie der Tethys) bis heute umstritten. Das ist insbesondere der Fall in West- und Zentral-Anatolien, wo im Zeitraum zwischen der Oberen Kreide (vor 98 bis 65 Mio. J.) und dem unteren Känozoikum (vor 65 bis 40 Mio. J.) ein kontinentales Fragment am südlichen Kontinentalrand der Eurasischen Platte angelagert wurde (auch als Akkretion bezeichnet). Der vorderste Bereich von diesem Fragment erfuhr vor etwa 85-80 Millionen Jahren eine metamorphe Umwandlung, die mit den Prozessen der fortschreitenden Subduktion assoziiert werden können. Hingegen wurden die hinteren Bereiche erst später vor ca. 40-30 Mio. J. durch die Kollison der zwei Platten metamorph überprägt. Die ungewöhnlich lange Zeitspanne von etwa 40-50 Mio. J. zwischen den metamorphen Prozessen der Subduktion und der Kollision, stellt eine entscheidende Frage zum Verständnis der Entstehung von Anatolien dar. Die Afyon Zone repräsentiert hierbei eine tektonisch-beanspruchte sedimentäre Gesteinseinheit, die in einer strukturell tieferen Position bezüglich des frontalen metamorphen Hochdruckgürtels liegt und südlich von ihm anzutreffen ist. Die Afyon Zone besteht aus mesozoischen sedimentären Einheiten (250 bis 65 Mio. J. alt), die auf präkambrischem (älter als 545 Mio. J.) bis paläozoischem Untergrund (bis vor 250 Mio J.) abgelagert wurden, und vom nordwestlichen bis zentralen Anatolien, entlang der vermutlichen Tethys-Suturzone, verfolgt werden können. Obwohl die Afyon-Zone als eine niedrig-temperierte metamorphe Gesteinseinheit bezeichnet wird, wurde in letzter Zeit von Vorkommen von Hochdruckmineralen (v.a. Eisen(Fe)-Magnesium(Mg)-Karpholith in metamorphen Sedimenten) im zentralen Bereich berichtet. Diese neuen Erkenntnisse stellen die bisherigen Interpretationen zur tektonisch-metamorphen Entstehung der gesamten Region in Frage, insbesondere der der Afyon-Zone. Deshalb war eine erneute gründliche Überarbeitung und Untersuchung der wenig studierten metamorph-überprägten Sedimentgesteine in diesem Gebiet notwendig. Deshalb, überarbeitete ich die metamorphe Entwicklung der gesamten Afyon Zone, beginnend mit intensiver Geländearbeit und -beobachtungen. Mineralvergesellschaftungen aus Karpholith und Glaukophan, die unter niedrigen Temperaturen und hohem Druck entstanden sind, wurden in der gesamten Gesteinseinheit gefunden. Guterhaltene Mineralvergesellschaftungen aus Karpholith und Chloritoid sind nützlich für das Verständnis unter welchen Temperatur- und Druck-Bedingungen die Gesteine in die Tiefe gelangen (prograde Metamorphose). Durch die Untersuchungen von Gesteinsgefügen und der Eisen-Magnesium-Verteilung zwischen den Mineralien Karpholith und Chloritoid lassen sich Aussagen zu der Bildungstemperatur und dem Druck dieser Minerale machen. Dafür benutzte ich eine verbesserte Datenbank mit Mineraleigenschaften, die mir die Modellierung von Temperatur und Druck erlaubte und im Einklang mit den chemischen und mikroskopischen Beobachtungen steht. Es ergab sich, dass die Karpholith-haltigen Gesteine in der Afyon-Zone einen Temperaturanstieg von 280 zu 380°C (bei einer Tiefe von 30-35 km) erfahren haben. Um noch bessere Aussagen über die Entstehung zu treffen, wurden auch radiometrische Datierungen an Proben aus der Afyon-Zone, sowie an zwei weiteren Sedimentgesteinseinheiten (Ören- und Kurudere-Nebiler-Einheit aus SW Anatolien) gemacht. Für die Altersbestimmung benutzte ich die weitverbreitete 40Ar-39Ar Datierungsmethode an Hellglimmer-Mineralien in den Karpholith-haltigen Gesteinen. Temperatur und Druck können auch bestimmt werden, wenn man den Übergang von einer Mineralvergesellschaftung zu einer anderen Vergesellschaftung beobachtet. Dies gilt zum Beispiel für den Übergang von einer Karpholith-haltigen Zusammensetzung zu einer Quartz-Chlorit-Glimmer und Quartz-Chlorit-Chloritoid Mineralvergesellschaftung wenn tief subduzierte Gesteine wieder nach oben gelangen (Exhumation). Damit lassen sich die radiometrischen Alter den metamorphen Prozessen zu bestimmten Temperaturen und Drücken zuordnen. Mit diesen Erkenntnissen lassen sich die Afyon-Zone und die Ören-Einheit einem Hochdruck-Gebirgsgürtel in der späten Kreidezeit zuordnen, während die Kurudere-Nebiler Einheit durch die mit der Subduktion in Verbindung stehende Metamorphose vor ca. 45 Mio. J. beeinflusst wurde. Später wurde diese Einheit durch die Metamorphose, resultierend aus der Kollision vor 26 Mio. J., abgekühlt. Die Ergebnisse dieser und anderer Arbeiten erlauben es die Anlagerung von Kontinenten in West-Anatolien besser zu verstehen. Es wird gezeigt, dass mindestens zwei (im Gegensatz zu vorher einem) voneinander unabhängige Ozeanarme während der Subduktion von 92 bis 45 Millionen Jahren geschlossen wurden. Zwischen 85-80 und 70-65 Millionen Jahren, wurde ein schmales kontinentales Gebiet (welches die Afyon-Zone beinhaltet) in die Subduktionszone hineingzogen. Teile der subduzierten kontientalen Kruste kamen wieder an die Oberfläche (Exhumation), während die obere ozeanische Platte südwärts transportiert wurde. Die anhaltende Subduktion im oberen Bereich des Erdmantels (Lithosphäre) führte zu der Schließung des südlichen Ozeanarms und zu der Subduktion des zweiten kontinentalen Gebietes (welches die Kurudere-Nebiler-Einheit beinhaltete). Darauf folgte die kontinentale Kollisionsphase unter dem Ausklingen der Prozesse der Subduktion, der Krustenverdickung und der Abtrennung der subduzierten ozeanischen Platte von der akkretionierten kontientalen Lithosphäre (auch als Delamination bezeichnet). Die hier präsentierte Arbeit unterstüzt die Annahme das während der Oberen Kreidezeit das Ost-Mediterrane Gebiet tektonsich komplex angeordnet war, vergleichbar mit dem heutigen Südost-Asien oder der Karibik, mit ihren vielen gleichzeitig existierenden ozeanischen Becken, Mikrokontinenten und Subduktionszonen. KW - Anatolien KW - hochdruckmetamorphe Sedimente KW - Karpholithe KW - 40Ar-39Ar Datierungsmethode KW - Anatolia KW - high-pressure metasediments KW - carpholite KW - Ar-Ar geochronology KW - multi-equilibrium thermobarometry Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-57803 ER - TY - JOUR A1 - Vargas, Gabriel A1 - Farias, Marcelo A1 - Carretier, Sebastien A1 - Tassara, Andres A1 - Baize, Stephane A1 - Melnick, Daniel T1 - Coastal uplift and tsunami effects associated to the 2010 M(w)8.8 Maule earthquake in Central Chile JF - Andean geology N2 - On February 27, 2010 at 03:34:08 AM an M(w)8.8 earthquake, with epicenter located off Cobquecura (73.24 degrees W; 36.29 degrees S), severely hit Central Chile. The tsunami waves that followed this event affected the coastal regions between the cities of Valparaiso and Valdivia, with minor effects as far as Coquimbo. The earthquake occurred along the subduction of the Nazca oceanic plate beneath the South American plate. Coseismic coastal uplift was estimated through observations of bleached lithothamnioids crustose coralline algae, which were exposed after the mainshock between 34.13 degrees S and 38.34 degrees S, suggesting the latitudinal distribution of the earthquake rupture. The measured coastal uplift values varied between 240 +/- 20 cm at sites closer to the trench along the western coast of the Arauco peninsula and 15 +/- 10 cm at sites located farther east. A maximum value of 260 +/- 50 cm was observed at the western coast of Santa Maria Island, which is similar to the reported uplift associated with the 1835 earthquake at Concepcion. Land subsidence values on the order of 0.5 m to 1 m evidenced a change in polarity and position of the coseismic hinge at 110-120 km from the trench. In four sites along the coast we observed a close match between coastal uplift values deduced from bleached lithothamnioids algae and GPS measurements. According to field observations tsunami heights reached ea. 14 m in the coastal area of the Maule Region immediately north of the epicenter, and diminished progressively northwards to 4-2 m near Valparaiso. Along the coast of Cobquecura, tsunami height values were inferior to 2-4 m. More variable tsunami heights of 6-8 m were measured at Dichato-Talcahuano and Tirua-Puerto Saavedra, in the Biobio and Arauco regions, respectively, to the south of the epicenter. According to eyewitnesses, the tsunami reached the coast between 12 to 20 and 30 to 45 minutes in areas located closer and faraway from the earthquake rupture zone, respectively. Destructive tsunami waves arrived also between 2.5 and 4.5 hours after the mainshock, especially along the coast of the Biobio and Arauco regions. The tsunami effects were highly variable along the coast, as a result of geomorphological and bathymetric local conditions, besides potential complexities induced by the main shock. KW - M(w)8.8 Maule earthquake KW - Central Chile KW - Coseismic coastal uplift KW - Tsunami effect Y1 - 2011 U6 - https://doi.org/10.5027/andgeoV38n1-a12 SN - 0718-7106 VL - 38 IS - 1 SP - 219 EP - 238 PB - Servicio Nacional de Geologìa y Minerìa CY - Santiago ER - TY - JOUR A1 - Wasiolka, Bernd A1 - Blaum, Niels T1 - Comparing biodiversity between protected savanna and adjacent non-protected farmland in the southern Kalahari JF - Journal of arid environments N2 - In this study we investigated the effect of different land use options (wildlife versus livestock) on species richness of plants and reptiles in the protected Kgalagadi Transfrontier Park (KTP) versus adjacent non-protected farmland within the same savanna habitat type (Aoub dune veld) in the southern Kalahari, South Africa. Our results show that both plant and reptile species richness as well as plant cover and reptile abundance was significantly higher in the protected KTP than in the non-protected farmland. The higher proportion of shrub but lower proportions of perennial grass cover, herb cover, and herb species richness in the farmland can be explained by higher stocking rates and the differences in feeding behaviour between native wild ungulates (e.g. Antidorcas marsupialis, Oryx gazella) and livestock (mainly sheep). The reptile's prey availability and microhabitats (perennial grass tussocks and rodent burrows) for thermoregulation and protection against predators were significantly lower in the farmland. To conclude, our results clearly show that long term effects of different land use options (wildlife in protected KTP versus extensive livestock production in the non-protected farmland) even within the same habitat type have led to significant changes in vegetation composition, availability of microhabitat structures and in the reptile community. KW - Kgalagadi Transfrontier Park KW - Rangeland KW - Degradation KW - Species richness KW - Conservation KW - Reptile Y1 - 2011 U6 - https://doi.org/10.1016/j.jaridenv.2011.04.011 SN - 0140-1963 VL - 75 IS - 9 SP - 836 EP - 841 PB - Elsevier CY - London ER - TY - JOUR A1 - Endrun, Brigitte A1 - Lebedev, Sergei A1 - Meier, Thomas A1 - Tirel, Celine A1 - Friederich, Wolfgang T1 - Complex layered deformation within the Aegean crust and mantle revealed by seismic anisotropy JF - Nature geoscience N2 - Continental lithosphere can undergo pervasive internal deformation, often distributed over broad zones near plate boundaries. However, because of the paucity of observational constraints on three-dimensional movement at depth, patterns of flow within the lithosphere remain uncertain. Endmember models for lithospheric flow invoke deformation localized on faults or deep shear zones or, alternatively, diffuse, viscous-fluid-like flow. Here we determine seismic Rayleigh-wave anisotropy in the crust and mantle of the Aegean region, an archetypal example of continental deformation. Our data reveal a complex, depth-dependent flow pattern within the extending lithosphere. Beneath the northern Aegean Sea, fast shear wave propagation is in a North-South direction within the mantle lithosphere, parallel to the extensional component of the current strain rate field. In the south-central Aegean, where deformation is weak at present, anisotropic fabric in the lower crust runs parallel to the direction of palaeo-extension in the Miocene. The close match of orientations of regional-scale anisotropic fabric and the directions of extension during the last significant episodes of deformation implies that at least a large part of the extension in the Aegean has been taken up by distributed viscous flow in the lower crust and lithospheric mantle. Y1 - 2011 U6 - https://doi.org/10.1038/NGEO1065 SN - 1752-0894 VL - 4 IS - 3 SP - 203 EP - 207 PB - Nature Publ. Group CY - New York ER - TY - JOUR A1 - Postberg, Frank A1 - Grün, Eberhard A1 - Horanyi, Mihaly A1 - Kempf, Sascha A1 - Krueger, Harald A1 - Schmidt, Jürgen A1 - Spahn, Frank A1 - Srama, Ralf A1 - Sternovsky, Zoltan A1 - Trieloff, Mario T1 - Compositional mapping of planetary moons by mass spectrometry of dust ejecta JF - Planetary and space science N2 - Classical methods to analyze the surface composition of atmosphereless planetary objects from an orbiter are IR and gamma ray spectroscopy and neutron backscatter measurements. The idea to analyze surface properties with an in-situ instrument has been proposed by Johnson et al. (1998). There, it was suggested to analyze Europa's thin atmosphere with an ion and neutral gas spectrometer. Since the atmospheric components are released by sputtering of the moon's surface, they provide a link to surface composition. Here we present an improved, complementary method to analyze rocky or icy dust particles as samples of planetary objects from which they were ejected. Such particles, generated by the ambient meteoroid bombardment that erodes the surface, are naturally present on all atmosphereless moons and planets. The planetary bodies are enshrouded in clouds of ballistic dust particles, which are characteristic samples of their surfaces. In situ mass spectroscopic analysis of these dust particles impacting onto a detector of an orbiting spacecraft reveals their composition. Recent instrumental developments and tests allow the chemical characterization of ice and dust particles encountered at speeds as low as 1 km/s and an accurate reconstruction of their trajectories. Depending on the sampling altitude, a dust trajectory sensor can trace back the origin of each analyzed grain with about 10 km accuracy at the surface. Since the detection rates are of the order of thousand per orbit, a spatially resolved mapping of the surface composition can be achieved. Certain bodies (e.g., Europa) with particularly dense dust clouds, could provide impact statistics that allow for compositional mapping even on single flybys. Dust impact velocities are in general sufficiently high at orbiters about planetary objects with a radius > 1000 km and with only a thin or no atmosphere. In this work we focus on the scientific benefit of a dust spectrometer on a spacecraft orbiting Earth's Moon as well as Jupiter's Galilean satellites. This 'dust spectrometer' approach provides key chemical and isotopic constraints for varying provinces or geological formations on the surfaces, leading to better understanding of the body's geological evolution. KW - Moon KW - Europa KW - Ganymede KW - Dust KW - Surface composition KW - Spectrometry Y1 - 2011 U6 - https://doi.org/10.1016/j.pss.2011.05.001 SN - 0032-0633 VL - 59 IS - 14 SP - 1815 EP - 1825 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Jeltsch, Florian A1 - Moloney, Kirk A. A1 - Schwager, Monika A1 - Körner, Katrin A1 - Blaum, Niels T1 - Consequences of correlations between habitat modifications and negative impact of climate change for regional species survival JF - Agriculture, ecosystems & environment : an international journal for scientific research on the relationship of agriculture and food production to the biosphere N2 - While several empirical and theoretical studies have clearly shown the negative effects of climate or landscape changes on population and species survival only few of them addressed combined and correlated consequences of these key environmental drivers. This also includes positive landscape changes such as active habitat management and restoration to buffer the negative effects of deteriorating climatic conditions. In this study, we apply a conceptual spatial modelling approach based on functional types to explore the effects of both positive and negative correlations between changes in habitat and climate conditions on the survival of spatially structured populations. We test the effect of different climate and landscape change scenarios on four different functional types that represent a broad spectrum of species characterised by their landscape level carrying capacity, the local population turnover rates at the patch level (K-strategies vs. r-strategies) and dispersal characterstics. As expected, simulation results show that correlated landscape and climatic changes can accelerate (in case of habitat loss or degradation) or slow down (in case of habitat gain or improvement) regional species extinction. However, the strength of the combined changes depends on local turnover at the patch level, the overall landscape capacity of the species, and its specific dispersal characteristics. Under all scenarios of correlated changes in habitat and climate conditions we found the highest sensitivity for functional types representing species with a low landscape capacity but a high population growth rate and a strong density regulation causing a high turnover at the local patch level. The relative importance of habitat loss or habitat degradation, in combination with climate deterioration, differed among the functional types. However, an increase in regional capacity revealed a similar response pattern: For all types, habitat improvement led to higher survival times than habitat gain, i.e. the establishment of new habitat patches. This suggests that improving local habitat quality at a regional scale is a more promising conservation strategy under climate change than implementing new habitat patches. This conceptual modelling study provides a general framework to better understand and support the management of populations prone to complex environmental changes. KW - Functional types KW - Spatially explicit modelling KW - Dynamic landscapes KW - Species conservation KW - Habitat fragmentation KW - Habitat management Y1 - 2011 U6 - https://doi.org/10.1016/j.agee.2010.12.019 SN - 0167-8809 VL - 145 IS - 1 SP - 49 EP - 58 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Czuba, Wojciech A1 - Grad, Marek A1 - Mjelde, Rolf A1 - Guterch, Aleksander A1 - Libak, Audun A1 - Krüger, Frank A1 - Murai, Yoshio A1 - Schweitzer, Johannes T1 - Continent-ocean-transition across a trans-tensional margin segment: off Bear Island, Barents Sea JF - Geophysical journal international N2 - P>A 410 km long Ocean Bottom Seismometer profile spanning from the Bear Island, Barents Sea to oceanic crust formed along the Mohns Ridge has been modelled by use of ray-tracing with regard to observed P-waves. The northeastern part of the model represents typical continental crust, thinned from ca. 30 km thickness beneath the Bear Island to ca. 13 km within the Continent-Ocean-Transition. Between the Hornsund FZ and the Kn circle divide legga Fault, a 3-4 km thick sedimentary basin, dominantly of Permian/Carboniferous age, is modelled beneath the ca. 1.5 km thick layer of volcanics (Vestbakken Volcanic Province). The P-wave velocity in the 3-4 km thick lowermost continental crust is significantly higher than normal (ca. 7.5 km s-1). We interpret this layer as a mixture of mafic intrusions and continental crystalline blocks, dominantly related to the Paleocene-Early Eocene rifting event. The crystalline portion of the crust within the south-western part of the COT consists of a ca. 30 km wide and ca. 6 km thick high-velocity (7.3 km s-1) body. We interpret the body as a ridge of serpentinized peridotites. The magmatic portion of the ocean crust accreted along the Knipovich Ridge from continental break-up at ca. 35 Ma until ca. 20 Ma is 3-5 km thicker than normal. We interpret the increased magmatism as a passive response to the bending of this southernmost part of the Knipovich Ridge. The thickness of the magmatic portion of the crust formed along the Mohns Ridge at ca. 20 Ma decreases to ca. 3 km, which is normal for ultra slow spreading ridges. KW - Controlled source seismology KW - Dynamics of lithosphere and mantle KW - Crustal structure KW - Atlantic Ocean Y1 - 2011 U6 - https://doi.org/10.1111/j.1365-246X.2010.04873.x SN - 0956-540X VL - 184 IS - 2 SP - 541 EP - 554 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Hayhoe, Shelby J. A1 - Neill, Christopher A1 - Porder, Stephen A1 - McHorney, Richard A1 - Lefebvre, Paul A1 - Coe, Michael T. A1 - Elsenbeer, Helmut A1 - Krusche, Alex V. T1 - Conversion to soy on the Amazonian agricultural frontier increases streamflow without affecting stormflow dynamics JF - Global change biology N2 - Large-scale soy agriculture in the southern Brazilian Amazon now rivals deforestation for pasture as the region's predominant form of land use change. Such landscape-level change can have substantial consequences for local and regional hydrology, but these effects remain relatively unstudied in this ecologically and economically important region. We examined how the conversion to soy agriculture influences water balances and stormflows using stream discharge (water yields) and the timing of discharge (stream hydrographs) in small (2.5-13.5 km2) forested and soy headwater watersheds in the Upper Xingu Watershed in the state of Mato Grosso, Brazil. We monitored water yield for 1 year in three forested and four soy watersheds. Mean daily water yields were approximately four times higher in soy than forested watersheds, and soy watersheds showed greater seasonal variability in discharge. The contribution of stormflows to annual streamflow in all streams was low (< 13% of annual streamflow), and the contribution of stormflow to streamflow did not differ between land uses. If the increases in water yield observed in this study are typical, landscape-scale conversion to soy substantially alters water-balance, potentially altering the regional hydrology over large areas of the southern Amazon. KW - Amazon KW - baseflow KW - hydrology KW - land use change KW - soybean cultivation KW - water yield Y1 - 2011 U6 - https://doi.org/10.1111/j.1365-2486.2011.02392.x SN - 1354-1013 VL - 17 IS - 5 SP - 1821 EP - 1833 PB - Wiley-Blackwell CY - Malden ER - TY - JOUR A1 - Becken, Michael A1 - Ritter, Oliver A1 - Bedrosian, Paul A. A1 - Weckmann, Ute T1 - Correlation between deep fluids, tremor and creep along the central San Andreas fault JF - Nature : the international weekly journal of science N2 - The seismicity pattern along the San Andreas fault near Parkfield and Cholame, California, varies distinctly over a length of only fifty kilometres. Within the brittle crust, the presence of frictionally weak minerals, fault-weakening high fluid pressures and chemical weakening are considered possible causes of an anomalously weak fault northwest of Parkfield(1-4). Non-volcanic tremor from lower-crustal and upper-mantle depths(5-7) is most pronounced about thirty kilometres southeast of Parkfield and is thought to be associated with high pore-fluid pressures at depth(8). Here we present geophysical evidence of fluids migrating into the creeping section of the San Andreas fault that seem to originate in the region of the uppermost mantle that also stimulates tremor, and evidence that along-strike variations in tremor activity and amplitude are related to strength variations in the lower crust and upper mantle. Interconnected fluids can explain a deep zone of anomalously low electrical resistivity that has been imaged by magnetotelluric data southwest of the Parkfield-Cholame segment. Near Cholame, where fluids seem to be trapped below a high-resistivity cap, tremor concentrates adjacent to the inferred fluids within a mechanically strong zone of high resistivity. By contrast, sub-vertical zones of low resistivity breach the entire crust near the drill hole of the San Andreas Fault Observatory at Depth, northwest of Parkfield, and imply pathways for deep fluids into the eastern fault block, coincident with a mechanically weak crust and the lower tremor amplitudes in the lower crust. Fluid influx to the fault system is consistent with hypotheses of fault-weakening high fluid pressures in the brittle crust. Y1 - 2011 U6 - https://doi.org/10.1038/nature10609 SN - 0028-0836 VL - 480 IS - 7375 SP - 87 EP - U248 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Mohsen, Amjad A1 - Asch, Günter A1 - Mechie, James A1 - Kind, Rainer A1 - Hofstetter, Rami A1 - Weber, Michael H. A1 - Stiller, M. A1 - Abu-Ayyash, Khalil T1 - Crustal structure of the Dead Sea Basin (DSB) from a receiver function analysis JF - Geophysical journal international N2 - The Dead Sea Transform (DST) is a major left-lateral strike-slip fault that accommodates the relative motion between the African and Arabian plates, connecting a region of extension in the Red Sea to the Taurus collision zone in Turkey over a length of about 1100 km. The Dead Sea Basin (DSB) is one of the largest basins along the DST. The DSB is a morphotectonic depression along the DST, divided into a northern and a southern sub-basin, separated by the Lisan salt diapir. We report on a receiver function study of the crust within the multidisciplinary geophysical project, DEad Sea Integrated REsearch (DESIRE), to study the crustal structure of the DSB. A temporary seismic network was operated on both sides of the DSB between 2006 October and 2008 April. The aperture of the network is approximately 60 km in the E-W direction crossing the DSB on the Lisan peninsula and about 100 km in the N-S direction. Analysis of receiver functions from the DESIRE temporary network indicates that Moho depths vary between 30 and 38 km beneath the area. These Moho depth estimates are consistent with results of near-vertical incidence and wide-angle controlled-source techniques. Receiver functions reveal an additional discontinuity in the lower crust, but only in the DSB and west of it. This leads to the conclusion that the internal crustal structure east and west of the DSB is different at the present-day. However, if the 107 km left-lateral movement along the DST is taken into account, then the region beneath the DESIRE array where no lower crustal discontinuity is observed would have lain about 18 Ma ago immediately adjacent to the region under the previous DESERT array west of the DST where no lower crustal discontinuity is recognized. KW - Transform faults KW - Crustal structure Y1 - 2011 U6 - https://doi.org/10.1111/j.1365-246X.2010.04853.x SN - 0956-540X VL - 184 IS - 1 SP - 463 EP - 476 PB - Wiley-Blackwell CY - Malden ER - TY - JOUR A1 - Ehlert, C. A1 - Frank, M. A1 - Haley, B. A. A1 - Boeniger, Urs A1 - De Deckker, P. A1 - Gingele, F. X. T1 - Current transport versus continental inputs in the eastern Indian Ocean Radiogenic isotope signatures of clay size sediments JF - Geochemistry, geophysics, geosystems N2 - Analyses of radiogenic neodymium (Nd), strontium (Sr), and lead (Pb) isotope compositions of clay-sized detrital sediments allow detailed tracing of source areas of sediment supply and present and past transport of particles by water masses in the eastern Indian Ocean. Isotope signatures in surface sediments range from -21.5 (epsilon Nd), 0.8299 ((87)Sr/(86S)r), and 19.89 ((206)Pb/(204)Pb) off northwest Australia to + 0.7 (epsilon Nd), 0.7069 ((87)Sr/(86)Sr), and 17.44 ((206)Pb/(204)Pb) southwest of Java. The radiogenic isotope signatures primarily reflect petrographic characteristics of the surrounding continental bedrocks but are also influenced by weathering-induced grain size effects of Pb and Sr isotope systems with superimposed features that are caused by current transport of clay-sized particles, as evidenced off Australia where a peculiar isotopic signature characterizes sediments underlying the southward flowing Leeuwin Current and the northward flowing West Australian Current (WAC). Gravity core FR10/95-GC17 off west Australia recorded a major isotopic change from Last Glacial Maximum values of -10 (epsilon Nd), 0.745 ((87S)r/(86)Sr), and 18.8 ((206)Pb/(204)Pb) to Holocene values of -22 (epsilon Nd), 0.8 ((87)Sr/(86)Sr), and 19.3 ((206)Pb/(204)Pb), which documents major climatically driven changes of the WAC and in local riverine particle supply from Australia during the past 20 kyr. In contrast, gravity core FR10/95-GC5 located below the present-day pathway of the Indonesian throughflow (ITF) shows a much smaller isotopic variability, indicating a relatively stable ITF hydrography over most of the past 92 kyr. Only the surface sediments differ significantly in their isotopic composition, indicating substantial changes in erosional sources attributed to a change of the current regime during the past 5 kyr. KW - Indonesian throughflow KW - Leeuwin Current KW - clay sediments KW - past circulation KW - radiogenic isotopes KW - weathering inputs Y1 - 2011 U6 - https://doi.org/10.1029/2011GC003544 SN - 1525-2027 VL - 12 IS - 12 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Hothorn, Torsten A1 - Müller, Jörg A1 - Schroeder, Boris A1 - Kneib, Thomas A1 - Brandl, Roland T1 - Decomposing environmental, spatial, and spatiotemporal components of species distributions JF - Ecological monographs : a publication of the Ecological Society of America. N2 - Species distribution models are an important tool to predict the impact of global change on species distributional ranges and community assemblages. Although considerable progress has been made in the statistical modeling during the last decade, many approaches still ignore important features of species distributions, such as nonlinearity and interactions between predictors, spatial autocorrelation, and nonstationarity, or at most incorporate only some of these features. Ecologists, however, require a modeling framework that simultaneously addresses all these features flexibly and consistently. Here we describe such an approach that allows the estimation of the global effects of environmental variables in addition to local components dealing with spatiotemporal autocorrelation as well as nonstationary effects. The local components can be used to infer unknown spatiotemporal processes; the global component describes how the species is influenced by the environment and can be used for predictions, allowing the fitting of many well-known regression relationships, ranging from simple linear models to complex decision trees or from additive models to models inspired by machine learning procedures. The reliability of spatiotemporal predictions can be qualitatively predicted by separately evaluating the importance of local and global effects. We demonstrate the potential of the new approach by modeling the breeding distribution of the Red Kite (Milvus milvus), a bird of prey occurring predominantly in Western Europe, based on presence/absence data from two mapping campaigns using grids of 40 km 2 in Bavaria. The global component of the model selected seven environmental variables extracted from the CORINE and WorldClim databases to predict Red Kite breeding. The effect of altitude was found to be nonstationary in space, and in addition, the data were spatially autocorrelated, which suggests that a species distribution model that does not allow for spatially varying effects and spatial autocorrelation would have ignored important processes determining the distribution of Red Kite breeding across Bavaria. Thus, predictions from standard species distribution models that do not allow for real-world complexities may be considerably erroneous. Our analysis of Red Kite breeding exemplifies the potential of the innovative approach for species distribution models. The method is also applicable to modeling count data. KW - boosting KW - model selection KW - nonstationarity KW - spatial autocorrelation KW - species distribution model KW - structured additive model KW - variable selection Y1 - 2011 U6 - https://doi.org/10.1890/10-0602.1 SN - 0012-9615 VL - 81 IS - 2 SP - 329 EP - 347 PB - Wiley CY - Washington ER - TY - JOUR A1 - Kallmeyer, Jens ED - Laskin, AI ED - Sariaslani, S ED - Gadd, GM T1 - Detection and quantification of microbial cells in subsurface sediments JF - Advances in applied microbiology JF - Advances in Applied Microbiology N2 - Quantification of total cell abundance is one of the most fundamental parameters in the exploration of subsurface life. Despite all recent advances in molecular techniques, this parameter is usually determined by fluorescence microscopy. In order to obtain reliable and reproducible results, it is important not just to focus on the actual cell enumeration but also to consider the entire chain of processing. Starting with the retrieval of the sample, over subsampling and sample processing to the final step of fluorescence microscopy, there are many potential sources of contamination that have to be assessed and, if possible, avoided. Because some degree of sample contamination will always occur, it is necessary to employ some form of contamination control. Different tracers are available, each one with its specific advantages and drawbacks. In many cases, the problems arise not after the sample has arrived in a well-equipped laboratory with highly trained personnel, but much earlier at the drill site or in a field camp. In this review, I discuss the different aspects of cell enumeration in subsurface sediment, evaluating every step in the long process chain. Y1 - 2011 SN - 978-0-12-387048-3 U6 - https://doi.org/10.1016/B978-0-12-387048-3.00003-9 SN - 0065-2164 VL - 76 SP - 79 EP - 103 PB - Elsevier CY - San Diego ER - TY - JOUR A1 - Hiemer, Stefan A1 - Scherbaum, Frank A1 - Rößler, Dirk A1 - Kühn, Nicolas T1 - Determination of tau(0) and Rock Site kappa from Records of the 2008/2009 Earthquake Swarm in Western Bohemia JF - Seismological research letters Y1 - 2011 U6 - https://doi.org/10.1785/gssrl.82.3.387 SN - 0895-0695 VL - 82 IS - 3 SP - 387 EP - 393 PB - Seismological Society of America CY - El Cerrito ER - TY - JOUR A1 - Kotkova, Jana A1 - O'Brien, Patrick J. A1 - Ziemann, Martin Andreas T1 - Diamond and coesite discovered in Saxony-type granulite solution to the Variscan garnet peridotite enigma JF - Geology N2 - The pressures required for diamond and coesite formation far exceed conditions reached by even the deepest present-day orogenic crustal roots. Therefore the occurrence of metamorphosed continental crust containing these minerals requires processes other than crustal thickening to have operated in the past. Here we report the first in situ finding of diamond and coesite, characterized by micro-Raman spectroscopy, in high-pressure granulites otherwise indistinguishable from granulites found associated with garnet peridotite throughout the European Variscides. Our discovery confirms the provenance of Europe's first reliable diamond, the "Bohemian diamond," found in A.D. 1870, and also represents the first robust evidence for ultrahigh-pressure conditions in a major Variscan crustal rock type. A process of deep continental subduction is required to explain the metamorphic pressures and the granulite-garnet peridotite association, and thus tectonometamorphic models for these rocks involving a deep orogenic crustal root need to be significantly modified. Y1 - 2011 U6 - https://doi.org/10.1130/G31971.1 SN - 0091-7613 VL - 39 IS - 7 SP - 667 EP - 670 PB - American Institute of Physics CY - Boulder ER - TY - JOUR A1 - Herzschuh, Ulrike A1 - Ni, Jian A1 - Birks, H. John B. A1 - Böhner, Jürgen T1 - Driving forces of mid-Holocene vegetation shifts on the upper Tibetan Plateau, with emphasis on changes in atmospheric CO2 concentrations JF - Quaternary science reviews : the international multidisciplinary research and review journal N2 - Numerous pollen records across the upper Tibetan Plateau indicate that in the early part of the mid-Holocene, Kobresia-rich high-alpine meadows invaded areas formerly dominated by alpine steppe vegetation rich in Artemisia. We examine climate, land-use, and CO2 concentration changes as potential drivers for this marked vegetation change. The climatic implications of these vegetational shifts are explored by applying a newly developed pollen-based moisture-balance transfer-function to fossil pollen spectra from Koucha Lake on the north-eastern Tibetan Plateau (34.0 degrees N; 97.2 degrees E; 4540 m a.s.l.) and Xuguo Lake on the central Tibetan Plateau (31.97 degrees N; 90.3 degrees E; 4595 m a.s.l.), both located in the meadow-steppe transition zone. Reconstructed moisture-balances were markedly reduced (by similar to 150-180 mm) during the early mid-Holocene compared to the late-Holocene. These findings contradict most other records from the Indian monsoonal realm and also most non-pollen records from the Tibetan Plateau that indicate a rather wet early- and mid-Holocene. The extent and timing of anthropogenic land-use involving grazing by large herbivores on the upper Tibetan Plateau and its possible impacts on high-alpine vegetation are still mostly unknown due to the lack of relevant archaeological evidence. Arguments against a mainly anthropogenic origin of Kobresia high-alpine meadows are the discovery of the widespread expansion of obviously 'natural' Kobresia meadows on the south-eastern Tibetan Plateau during the Lateglacial period indicating the natural origin of this vegetation type and the lack of any concurrence between modern human-driven vegetation shifts and the mid-Holocene compositional changes. Vegetation types are known to respond to atmospheric CO2 concentration changes, at least on glacial-interglacial scales. This assumption is confirmed by our sensitivity study where we model Tibetan vegetation at different CO2 concentrations of 375 (present-day), 260 (early Holocene), and 650 ppm (future scenario) using the BIOME4 global vegetation model. Previous experimental studies confirm that vegetation growing on dry and high sites is particularly sensitive to CO2 changes. Here we propose that the replacement of drought-resistant alpine steppes (that are well adapted to low CO2 concentrations) by mesic Kobresia meadows can, at least, be partly interpreted as a response to the increase of CO2 concentration since 7000 years ago due to fertilization and water-saving effects. Our hypothesis is corroborated by former CO2 fertilization experiments performed on various dry grasslands and by the strong recent expansion of high-alpine meadows documented by remote sensing studies in response to recent CO2 increases. KW - Tibetan Plateau KW - Pollen KW - Holocene KW - Transfer function KW - Kobresia meadow KW - Atmospheric CO2 concentration Y1 - 2011 U6 - https://doi.org/10.1016/j.quascirev.2011.03.007 SN - 0277-3791 VL - 30 IS - 15-16 SP - 1907 EP - 1917 PB - Elsevier CY - Oxford ER - TY - THES A1 - Sietz, Diana T1 - Dryland vulnerability : typical patterns and dynamics in support of vulnerability reduction efforts T1 - Vulnerabilität in Trockengebieten: typische Muster und Dynamiken als Beitrag für Ansätze zur Verminderung von Vulnerabilität N2 - The pronounced constraints on ecosystem functioning and human livelihoods in drylands are frequently exacerbated by natural and socio-economic stresses, including weather extremes and inequitable trade conditions. Therefore, a better understanding of the relation between these stresses and the socio-ecological systems is important for advancing dryland development. The concept of vulnerability as applied in this dissertation describes this relation as encompassing the exposure to climate, market and other stresses as well as the sensitivity of the systems to these stresses and their capacity to adapt. With regard to the interest in improving environmental and living conditions in drylands, this dissertation aims at a meaningful generalisation of heterogeneous vulnerability situations. A pattern recognition approach based on clustering revealed typical vulnerability-creating mechanisms at global and local scales. One study presents the first analysis of dryland vulnerability with global coverage at a sub-national resolution. The cluster analysis resulted in seven typical patterns of vulnerability according to quantitative indication of poverty, water stress, soil degradation, natural agro-constraints and isolation. Independent case studies served to validate the identified patterns and to prove the transferability of vulnerability-reducing approaches. Due to their worldwide coverage, the global results allow the evaluation of a specific system’s vulnerability in its wider context, even in poorly-documented areas. Moreover, climate vulnerability of smallholders was investigated with regard to their food security in the Peruvian Altiplano. Four typical groups of households were identified in this local dryland context using indicators for harvest failure risk, agricultural resources, education and non-agricultural income. An elaborate validation relying on independently acquired information demonstrated the clear correlation between weather-related damages and the identified clusters. It also showed that household-specific causes of vulnerability were consistent with the mechanisms implied by the corresponding patterns. The synthesis of the local study provides valuable insights into the tailoring of interventions that reflect the heterogeneity within the social group of smallholders. The conditions necessary to identify typical vulnerability patterns were summarised in five methodological steps. They aim to motivate and to facilitate the application of the selected pattern recognition approach in future vulnerability analyses. The five steps outline the elicitation of relevant cause-effect hypotheses and the quantitative indication of mechanisms as well as an evaluation of robustness, a validation and a ranking of the identified patterns. The precise definition of the hypotheses is essential to appropriately quantify the basic processes as well as to consistently interpret, validate and rank the clusters. In particular, the five steps reflect scale-dependent opportunities, such as the outcome-oriented aspect of validation in the local study. Furthermore, the clusters identified in Northeast Brazil were assessed in the light of important endogenous processes in the smallholder systems which dominate this region. In order to capture these processes, a qualitative dynamic model was developed using generalised rules of labour allocation, yield extraction, budget constitution and the dynamics of natural and technological resources. The model resulted in a cyclic trajectory encompassing four states with differing degree of criticality. The joint assessment revealed aggravating conditions in major parts of the study region due to the overuse of natural resources and the potential for impoverishment. The changes in vulnerability-creating mechanisms identified in Northeast Brazil are well-suited to informing local adjustments to large-scale intervention programmes, such as “Avança Brasil”. Overall, the categorisation of a limited number of typical patterns and dynamics presents an efficient approach to improving our understanding of dryland vulnerability. Appropriate decision-making for sustainable dryland development through vulnerability reduction can be significantly enhanced by pattern-specific entry points combined with insights into changing hotspots of vulnerability and the transferability of successful adaptation strategies. N2 - Die Grenzen ökologischer Funktionen und menschlicher Lebensweisen in Trockengebieten werden häufig durch natürlichen und sozio-ökonomischen Stress, wie extreme Wetterereignisse und ungerechte Handelsbedingungen, weiter verengt. Zur Förderung der Entwicklung in Trockengebieten ist es daher wichtig, die Beziehung zwischen den Stressfaktoren und den sozio-ökologischen Systemen besser zu verstehen. Das Konzept der Vulnerabilität, welches in der vorliegenden Dissertation angewandt wird, beschreibt dieses Verhältnis durch die Exposition, Sensitivität und Anpassungsfähigkeit von Systemen im Hinblick auf Klima-, Markt- und anderen Stress. Bezüglich des Interesses, die Umwelt- und Lebensbedingungen in Trockengebieten zu verbessern, zielt diese Dissertation darauf ab, die vielschichtigen Ursachen und Veränderungen von Vulnerabilität sinnvoll zu verallgemeinern. Eine clusterbasierte Mustererkennung zeigte typische Mechanismen auf, welche Vulnerabilität auf globaler und lokaler Ebene verursachen. Dabei stellt die globale Studie die erste flächendeckende Untersuchung von Vulnerabilität in Trockengebieten mit sub-nationaler Auflösung dar. Die Clusteranalyse identifizierte sieben typische Muster basierend auf der quantitativen Beschreibung von Armut, Wasserknappheit, Bodendegradation, natürlichen Produktionshemmnissen und Isolation. Die Gültigkeit der ermittelten Cluster und die Übertragbarkeit von Anpassungsmaßnahmen innerhalb ähnlicher Gebiete wurden anhand unabhängiger Fallstudien belegt. Die flächendeckende Erfassung erlaubt es, die Vulnerabilität eines Systems in seinem größeren Kontext zu bewerten, auch in weniger gut durch Fallstudien dokumentierten Gebieten. Weiterhin wurde die Klimavulnerabilität von Kleinbauern bezüglich ihrer Nahrungsmittelsicherung im peruanischen Altiplano untersucht. In diesem lokalen Kontext wurden vier Cluster von Haushalten gemäß ihrer Produktionsrisiken, landwirtschaftlichen Ressourcen, der Bildung und ihres nicht-landwirtschaftlichen Einkommens unterschieden. Eine erweiterte Gültigkeitsprüfung unter Nutzung unabhängig erhobener Informationen stellte heraus, dass wetterbedingte Schäden mit den ermittelten Clustern korrelieren und dass haushaltsspezifische Schadensursachen mit den durch die Muster angezeigten Mechanismen übereinstimmen. Die lokale Studie liefert wertvolle Hinweise auf bedarfsgerechte Eingriffe unter Beachtung der Heterogenität innerhalb der sozialen Gruppe der Kleinbauern. Die notwendigen Bedingungen zur Erkennung typischer Muster ergaben fünf methodische Schritte. Ihre Darlegung soll die Anwendung der gewählten Methode in zukünftigen Vulnerabilitätsstudien anregen und erleichtern. Die fünf Schritte umfassen die Ableitung relevanter Ursache-Wirkungs-Hypothesen, die Quantifizierung der Mechanismen, die Bewertung von Robustheit und Gültigkeit sowie die Ordnung der ermittelten Muster nach dem Grad der Vulnerabilität. Dabei ist die genaue Beschreibung der Hypothesen eine wesentliche Voraussetzung für die Quantifizierung der grundlegenden Prozesse sowie eine einheitliche Interpretation, Gültigkeitsprüfung und Ordnung der ermittelten Muster. Besondere Beachtung finden skalenbedingte Aspekte, wie beispielsweise die ergebnisorientierte Gültigkeitsprüfung in der lokalen Studie. Weiterhin wurden die in Nordostbrasilien ermittelten Cluster im Hinblick auf wichtige endogene Prozesse in den dort vorherrschenden kleinbäuerlichen Nutzungssystemen untersucht. Diese Prozesse umfassen die Aufteilung der Arbeitskraft, die landwirtschaftliche Produktion sowie Einkommens- und Ressourcendynamiken. Sie wurden in einem qualitativen dynamischen Modell erfasst, welches eine zyklische Trajektorie mit vier unterschiedlich problematischen Entwicklungszuständen ergab. Als besonders problematischer Aspekt verschärfte sich die Vulnerabilität in weiten Teilen des Untersuchungsgebietes durch die Übernutzung natürlicher Ressourcen und die Möglichkeit weiterer Verarmung. Die in Nordostbrasilien gezeigten Veränderungen sind dazu geeignet, groß angelegte Entwicklungsprogramme, wie zum Beispiel “Avança Brasil”, angemessen an lokale Gegebenheiten anzupassen. Insgesamt ermöglicht es die Kategorisierung einer begrenzten Anzahl typischer Muster und Veränderungen, die Vulnerabilität in Trockengebieten besser zu verstehen. Eine nachhaltige Entwicklung von Trockengebieten basierend auf der Minderung von Vulnerabilität kann durch musterspezifische Ansätze zusammen mit Hinweisen zu Veränderungen im Schweregrad und zur Übertragbarkeit erfolgreicher Anpassungsstrategien wirkungsvoll unterstützt werden. KW - Kausalstruktur KW - Archetyp KW - mehrfache Stressfaktoren KW - ländliche Entwicklung KW - räumlich explizit KW - Causal structure KW - archetype KW - multiple stress factors KW - rural development KW - spatially explicit Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-58097 ER - TY - THES A1 - Hainzl, Sebastian T1 - Earthquake triggering and interaction T1 - Erdbebenentstehung und Wechselwirkungen N2 - Earthquake faults interact with each other in many different ways and hence earthquakes cannot be treated as individual independent events. Although earthquake interactions generally lead to a complex evolution of the crustal stress field, it does not necessarily mean that the earthquake occurrence becomes random and completely unpredictable. In particular, the interplay between earthquakes can rather explain the occurrence of pronounced characteristics such as periods of accelerated and depressed seismicity (seismic quiescence) as well as spatiotemporal earthquake clustering (swarms and aftershock sequences). Ignoring the time-dependence of the process by looking at time-averaged values – as largely done in standard procedures of seismic hazard assessment – can thus lead to erroneous estimations not only of the activity level of future earthquakes but also of their spatial distribution. Therefore, it exists an urgent need for applicable time-dependent models. In my work, I aimed at better understanding and characterization of the earthquake interactions in order to improve seismic hazard estimations. For this purpose, I studied seismicity patterns on spatial scales ranging from hydraulic fracture experiments (meter to kilometer) to fault system size (hundreds of kilometers), while the temporal scale of interest varied from the immediate aftershock activity (minutes to months) to seismic cycles (tens to thousands of years). My studies revealed a number of new characteristics of fluid-induced and stress-triggered earthquake clustering as well as precursory phenomena in earthquake cycles. Data analysis of earthquake and deformation data were accompanied by statistical and physics-based model simulations which allow a better understanding of the role of structural heterogeneities, stress changes, afterslip and fluid flow. Finally, new strategies and methods have been developed and tested which help to improve seismic hazard estimations by taking the time-dependence of the earthquake process appropriately into account. N2 - Erdbeben interagieren in vielfältiger Weise miteinander, weshalb sie nicht als einzelne, unabhängige Ereignisse behandelt werden können. Obwohl diese Erdbebenwechselwirkungen in der Regel zu einer komplexen Entwicklung des Spannungsfelds führen, bedeutet dies nicht zwangsläufig, dass Erdbeben rein zufällig und völlig unberechenbar auftreten. Insbesondere kann das Zusammenspiel zwischen Erdbeben zu ausgeprägten Charakteristiken wie Phasen beschleunigter Aktivität, seismischer Ruhe sowie raumzeitlichen Erdbebenanhäufungen (Schwärme und Nachbebensequenzen) führen. Die Vernachlässigung der Zeitabhängigkeit des Erdbebenprozesses kann somit zu fehlerhaften Einschätzungen nicht nur des zukünftigen Aktivitätsniveaus, sondern auch der räumlichen Verteilung führen. Daher besteht ein dringender Bedarf an geeigneten zeitabhängigen Seismizitätsmodellen. Meine Arbeit zielt auf ein verbessertes Verständnis und Charakterisierung der Interaktionen von Erdbeben ab, um Abschätzungen der Erdbebengefährdung zu verbessern. Zu diesem Zweck untersuche ich Seismizitätsmuster auf den räumlichen Skalen von hydraulisch induzierten Öffnungsbrüchen (Meter bis Kilometer) bis zu Verwerfungssystemen (Hunderte von Kilometern), während die zeitlichen Skalen von Nachbebenaktivität (Minuten bis Monate) bis zu seismischen Zyklen (bis zu mehrere tausendend Jahre) reichen. Meine Studien ergeben eine Reihe neuer Merkmale von Fluid- und Spannungs-induzierten Erdbeben. Ergänzend zur reinen Datenanalyse der Erdbeben- und Deformationsdaten liefern statistische und Physik-basierte Modellsimulationen ein besseres Verständnis der Rolle von strukturellen Heterogenitäten, Spannungsänderungen und postseismischen Prozessen. Schließlich konnten neue Strategien und Methoden entwickelt und getestet werden, mit denen die Erdbebengefährdung besser eingeschätzt werden kann, indem die Zeitabhängigkeit des Erdbebens Prozess angemessen berücksichtigt wird. KW - Erdbebeninteraktion KW - Erdbebengefährdung KW - earthquake interaction KW - seismic hazard Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-50095 ER - TY - THES A1 - Junginger, Annett T1 - East African climate variability on different time scales : the Suguta Valley in the African-Asian Monsoon Domain T1 - Ostafrikanische Klimavariabilität auf unterschiedlichen Zeitskalen : das Suguta Valley in der Afrikanisch-Asiatischen Monsun Region N2 - Motivation | Societal and economic needs of East Africa rely entirely on the availability of water, which is governed by the regular onset and retreat of the rainy seasons. Fluctuations in the amounts of rainfall has tremendous impact causing widespread famine, disease outbreaks and human migrations. Efforts towards high resolution forecasting of seasonal precipitation and hydrological systems are therefore needed, which requires high frequency short to long-term analyses of available climate data that I am going to present in this doctoral thesis by three different studies. 15,000 years - Suguta Valley | The main study of this thesis concentrated on the understanding of humidity changes within the last African Humid Period (AHP, 14.8-5.5 ka BP). The nature and causes of intensity variations of the West-African (WAM) and Indian Summer monsoons (ISM) during the AHP, especially their exact influence on regional climate relative to each other, is currently intensely debated. Here, I present a high-resolution multiproxy lake-level record spanning the AHP from the remote Suguta Valley in the northern Kenya Rift, located between the WAM and ISM domains. The presently desiccated valley was during the AHP filled by a 300 m deep and 2200 km2 large palaeo-lake due to an increase in precipitation of only 26%. The record explains the synchronous onset of large lakes in the East African Rift System (EARS) with the longitudinal shift of the Congo Air Boundary (CAB) over the East African and Ethiopian Plateaus, as the direct consequence of an enhanced atmospheric pressure gradient between East-Africa and India due to a precessional-forced northern hemisphere insolation maximum. Pronounced, and abrupt lake level fluctuations during the generally wet AHP are explained by small-scale solar irradiation changes weakening this pressure gradient atmospheric moisture availability preventing the CAB from reaching the study area. Instead, the termination of the AHP occurred, in a non-linear manner due to a change towards an equatorial insolation maximum ca. 6.5 ka ago extending the AHP over Ethiopia and West-Africa. 200 years - Lake Naivasha | The second part of the thesis focused on the analysis of a 200 year-old sediment core from Lake Naivasha in the Central Kenya Rift, one of the very few present freshwater lakes in East Africa. The results revealed and confirmed, that the appliance of proxy records for palaeo-climate reconstruction for the last 100 years within a time of increasing industrialisation and therefore human impact to the proxy-record containing sites are broadly limited. Since the middle of the 20th century, intense anthropogenic activity around Lake Naivasha has led to cultural eutrophication, which has overprinted the influence of natural climate variation to the lake usually inferred from proxy records such as diatoms, transfer-functions, geochemical and sedimentological analysis as used in this study. The results clarify the need for proxy records from remote unsettled areas to contribute with pristine data sets to current debates about anthropologic induced global warming since the past 100 years. 14 years - East African Rift | In order to avoid human influenced data sets and validate spatial and temporal heterogeneities of proxy-records from East Africa, the third part of the thesis therefore concentrated on the most recent past 14 years (1996-2010) detecting climate variability by using remotely sensed rainfall data. The advancement in the spatial coverage and temporal resolutions of rainfall data allow a better understanding of influencing climate mechanisms and help to better interpret proxy-records from the EARS in order to reconstruct past climate conditions. The study focuses on the dynamics of intraseasonal rainfall distribution within catchments of eleven lake basins in the EARS that are often used for palaeo-climate studies. We discovered that rainfall in adjacent basins exhibits high complexities in the magnitudes of intraseasonal variability, biennial to triennial precipitation patterns and even are not necessarily correlated often showing opposite trends. The variability among the watersheds is driven by the complex interaction of topography, in particular the shape, length and elevation of the catchment and its relative location to the East African Rift System and predominant influence of the ITCZ or CAB, whose locations and intensities are dependent on the strength of low pressure cells over India, SST variations in the Atlantic, Pacific or Indian Ocean, QBO phases and the 11-year solar cycle. Among all seasons we observed, January-September is the season of highest and most complex rainfall variability, especially for the East African Plateau basins, most likely due to the irregular penetration and sensitivity of the CAB. N2 - Motivation | Die sozialen und ökonomischen Bedürfnisse Ostafrikas sind in erster Linie von der Wasserverfügbarkeit abhängig, welche durch das regelmäßige Einsetzen der Regenzeiten bestimmt wird. Jegliche Veränderungen der Wasserverfügbarkeit innerhalb der Regenzeiten verursachen Hungersnöte, Ausbruch von Krankheiten oder auch Bevölkerungswanderungen. Klärung der Ursachen von Niederschlagsvariabilitäten erfordert die Auswertung von hochauflösenden Kurz- als auch Langzeitanalysen, welche ich in dieser Arbeit durch drei Studien präsentieren werde. 15,000 Jahre - Suguta Valley | Die Hauptstudie dieser Doktorarbeit befasste sich mit dem Verständnis von Feuchtigkeitsschwankungen innerhalb der Afrikanischen Feuchtperiode (AHP, 5.5 - 14.8 ka BP). In dieser Studie präsentiere ich einen hoch-auflösenden Seespiegel Datensatz aus dem abgeschiedenen, unbewohnten Suguta Tal im nördlichen Grabenbruch in Kenia. Das momentan extrem trockene Tal war während der AHP mit einem 300 m tiefen und 2200 km2 großen Paläo-See bedeckt, was aus nur 26% zusätzlichem Niederschlag resultierte. Diese Erhöhung wurde vermutlich aus der Kombination aus erhöhter atmosphärer Feuchteverfügbarkeit infolge erhöhter früh-Holozäner präzessionsgesteuerten Einstrahlung auf der nördlichen Hemisphere sowie der Verschiebung der feuchten Kongo Luftmassengrenze (CAB) ostwärts über das Ostafrikanische und Äthiopische Plateau erreicht als direkte Folge eines erhöhten atmosphärischen Druckgradienten. Abrupte, starkte Seespiegelschwankungen innerhalb der generellen Feuchtphase sind auf geringe Veränderungen in der solaren Ausstrahlung zurückzufühen, welche zu einer Schwächung des Druckgradienten führten und damit den Einfluss der CAB im Untersuchungsgebiet verhinderten zusammen mit einer allgemeinene Reduktion der atmosphärischen Feuchteverfügbarkeit. Das Ende der AHP erfolgte im Gegensatz dazu eher nicht-linear aufgrund des Wechsels zu einem äquatorialen Einstrahlungsmaximum vor 6.5 ka, welches die AHP in Äthiopien und West-Afrika verlängerte. 200 Jahre - Lake Naivasha | Der zweite Teil dieser Arbeit konzentrierte sich auf die Analyse eines Sedimentkern des Naivasha See aus dem zentralen Kenia Rift über die letzten 200 Jahre, einem der wenigen Frischwasserseen in Ostafrika. Die natürliche Klimavariabilität sollte mittels Proxy-Datensätzen von Diatomeen, Transferfunktionen, geochemischen und sedimentologischen Analysen in dieser Studie aufgedeckt werden. Die Ergebnisse zeigten, dass seit Mitte des 20. Jahrhundert der zunehmende Einfluss des Menschen um den Naivasha See zu kultureller Eutrophierung geführt, welche den Einfluss der natürlichen Klimavariabilität auf den See überprägte. Die Gründe liegen in der Zeit, welche von steigender Industrialisierung und deshalb erhöhtem menschlichen Einfluss auf die Proxy-Daten enthaltenden Seen geprägt ist. Die Ergebnisse verdeutlichen die Notwendigkeit von Proxy-Daten aus unbesiedelten Gebieten, wenn man ,reine‘ Daten zur momentanen Debatte über den anthropogen gesteuerten Klimawandel der letzten 100 Jahre beitragen will. 14 Jahre - Ostafrikanisches Rift | Um räumliche Unregelmäßigkeiten in Proxy-Daten von Ostafrika richtig zu verstehen, konzentrierte sich der dritte Teil dieser Arbeit auf die Auswertung von ausschließlich fernerkundlich erworbenen heutigen, täglichen Niederschlagsreihen (1996-2010). Dies erlaubt ein besseres Verständnis über die möglichen klimatischen Einflussmechanismen und die Abschätzung ihres Einflusses auf die Paläo-Variabilität. Die Studie beschäftigt sich mit der Dynamik saisonaler Niederschlagsverteilung innerhalb der Einzugsgebiete von elf Seebecken im Ostafrikanischen Riftsystem, welche oft für Paläo-Klimastudien benutzt werden. Die Studie ergab, dass Niederschläge in angrenzenden Becken tatsächlich höchst unterschiedlich in ihrer Intensität sein können und dabei zwei- bis dreijährigen Niederschlagsmuster folgen oder sogar gegensätzliche Trends zeigen. Die Variabilität der einzelnen Seebecken wird durch die komplexe Wechselwirkung der Topographie, Form, Länge und Höhe des Einzugsgebietes, der relativen Lage im EARS, sowie dem Einfluss und Intensität der ITCZ und CAB bestimmt, welche z.B. abhängig von der Entwicklung besonders starker Tiefdruckgebiet über Indien, Veränderungen der Meeres-oberflächentemperaturen, QBO und dem 11-Jahres Sonnenzyklus sind. Im direkten Vergleich aller untersuchten Monate stellte sich heraus, dass Juli-September die Jahreszeit mit komplexester Niederschlagsvariabilität ist, besonders für die Becken des Ostafrikanischen Plateau, was durch den unregelmäßigen Einfluss der CAB verursacht wird. KW - Ostafrikanisches Grabensystem KW - Suguta Tal KW - Kongo Luftmassengrenze KW - Solare Austrahlung KW - Naivasha See KW - East African Rift System KW - Suguta Valley KW - Congo Air Boundary KW - Solar irradiation KW - Lake Naivasha Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-56834 ER - TY - THES A1 - Wolff, Christian Michael T1 - East African monsoon variability since the last glacial T1 - Ostafrikanische Monsunvariabilität seit dem letztem Glazial N2 - The impact of global warming on human water resources is attracting increasing attention. No other region in this world is so strongly affected by changes in water supply than the tropics. Especially in Africa, the availability and access to water is more crucial to existence (basic livelihoods and economic growth) than anywhere else on Earth. In East Africa, rainfall is mainly influenced by the migration of the Inter-Tropical Convergence Zone (ITCZ) and by the El Niño Southern Oscillation (ENSO) with more rain and floods during El Niño and severe droughts during La Niña. The forecasting of East African rainfall in a warming world requires a better understanding of the response of ENSO-driven variability to mean climate. Unfortunately, existing meteorological data sets are too short or incomplete to establish a precise evaluation of future climate. From Lake Challa near Mount Kilimanjaro, we report records from a laminated lake sediment core spanning the last 25,000 years. Analyzing a monthly cleared sediment trap confirms the annual origin of the laminations and demonstrates that the varve-thicknesses are strongly linked to the duration and strength of the windy season. Given the modern control of seasonal ITCZ location on wind and rain in this region and the inverse relation between the two, thicker varves represent windier and thus drier years. El Niño (La Niña) events are associated with wetter (drier) conditions in east Africa and decreased (increased) surface wind speeds. Based on this fact, the thickness of the varves can be used as a tool to reconstruct a) annual rainfall b) wind season strength, and c) ENSO variability. Within this thesis, I found evidence for centennialscale changes in ENSO-related rainfall variability during the last three millennia, abrupt changes in variability during the Medieval Climate Anomaly and the Little Ice Age, and an overall reduction in East African rainfall and its variability during the Last Glacial period. Climate model simulations support forward extrapolation from these lake-sediment data, indicating that a future Indian Ocean warming will enhance East Africa’s hydrological cycle and its interannual variability in rainfall. Furthermore, I compared geochemical analyses from the sediment trap samples with a broad range of limnological, meteorological, and geological parameters to characterize the impact of sedimentation processes from the in-situ rocks to the deposited sediments. As a result an excellent calibration for existing μXRF data from Lake Challa over the entire 25,000 year long profile was provided. The climate development during the last 25,000 years as reconstructed from the Lake Challa sediments is in good agreement with other studies and highlights the complex interactions between long-term orbital forcing, atmosphere, ocean and land surface conditions. My findings help to understand how abrupt climate changes occur and how these changes correlate with climate changes elsewhere on Earth. N2 - Änderungen des Klimas in einer sich erwärmenden Erde haben große Auswirkungen auf den globalen und lokalen Wasserhaushalt und rücken anhand starker Extremereignisse immer häufiger in den Fokus der Öffentlichkeit. Besonders die Regionen der Tropen sind von derartigen Einschnitten stark gefährdet. Der jährliche Niederschlag in Ostafrika ist stark mit der saisonalen Wanderung der ITCZ (Innertropischen Konvergenzzone) sowie mit dem El Niño/Southern Oscillation (ENSO) Phänomen verbunden. Extreme Regenfälle und Überschwemmungen während El Niño Jahren stehen Trockenheit und Dürren in La Niña Jahren gegenüber. Prognosen über zukünftige Veränderungen der ostafrikanischen Niederschläge erfordern ein verbessertes Verständnis der ENSO antreibenden Faktoren. Unglücklicherweise sind die vorhandenen meteorologischen Datenreihen nicht lang genug oder besitzen nicht die benötigte Homogenität. Einen hilfreichen Beitrag können jährlich geschichtete Seesedimente des am Fuße des Kilimandscharo gelegenen Lake Challa leisten. Anhand einer monatlich aufgelösten Sedimentfalle konnte ich nachweisen, dass die rund 25.000 Jahre zurückreichenden Sedimente eine jährliche Struktur besitzen sowie die Dicke dieser jährlichen Schichtung (Warve) stark mit der Dauer und Intensität der saisonal windreichen/trockenen Jahreszeit verbunden ist. Dickere Warven repräsentieren windige/trockene Jahre, wohingegen dünnere Warven für windschwache und feuchte Jahre stehen. Stärkere Winde und kaum Niederschläge treten oft im Zusammenhang mit einem La Niña Ereignis in Ostafrika auf, wohingegen während eines El Niño Ereignisses häufig extreme Niederschläge mit wenig Wind zu beobachten sind. Anhand der Vermessung der Warven kann man verschiedene Klimaparameter rekonstruieren: a) den jährlichen Niederschlag b) jährliche Windgeschwindigkeiten und ihre Intensitäten sowie c) ENSO Variabilitäten. Die in meiner Arbeit gewonnenen klimatischen Informationen zeigen starke Änderungen der ENSO Variabilität innerhalb der letzten 3.000 Jahre mit starken Unterschieden während der Kleinen Eiszeit und während der Mittelalterlichen Warmzeit sowie deutlich trockene und windige Bedingungen mit sehr geringen ENSO Aktivitäten im glazialem Zeitraum (18.500 und 21.000 Jahren). Modellberechnungen unterstützen diese Ergebnisse einer Zunahme von Extremereignissen und feuchteren Bedingungen im Zuge einer Erwärmung des Indischen Ozeans. Mittels geochemischer Analysen der Sedimentfallenproben sowie die daraus resultierende Verknüpfung mit limnologischen und meteorologischen Parametern, konnte ich einen entscheidenden Beitrag zur erfolgreichen Interpretation der existierenden 25.000 Jahre langen μXRF Datensätze leisten. Der Anteil an allochthonem und autochthonem Eintrag kann so genau klassifiziert werden. Das dadurch gewonnene Bild der Klimaentwicklung der letzten 25.000 Jahre deckt sich hervorragend mit anderen Studien und ermöglicht Einblicke in das komplexe Zusammenspiel zwischen Ozean-Atmosphäre und Umwelt auf dem afrikanischen Kontinent. Besonders die für die Ostafrikaforschung extrem hohe Auflösung der Daten wird helfen, die abrupten Klimawechsel und Interaktionen besser verstehen zu können. KW - Lake Challa KW - Sedimentfalle KW - Warve KW - ENSO KW - Monsun KW - Lake Challa KW - sediment trap KW - varve KW - ENSO KW - monsoon Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-58079 ER - TY - JOUR A1 - Wintle, Brendan A. A1 - Bekessy, Sarah A. A1 - Keith, David A. A1 - van Wilgen, Brian W. A1 - Cabeza, Mar A1 - Schröder-Esselbach, Boris A1 - Carvalho, Silvia B. A1 - Falcucci, Alessandra A1 - Maiorano, Luigi A1 - Regan, Tracey J. A1 - Rondinini, Carlo A1 - Boitani, Luigi A1 - Possingham, Hugh P. T1 - Ecological-economic optimization of biodiversity conservation under climate change JF - Nature climate change N2 - Substantial investment in climate change research has led to dire predictions of the impacts and risks to biodiversity. The Intergovernmental Panel on Climate Change fourth assessment report(1) cites 28,586 studies demonstrating significant biological changes in terrestrial systems(2). Already high extinction rates, driven primarily by habitat loss, are predicted to increase under climate change(3-6). Yet there is little specific advice or precedent in the literature to guide climate adaptation investment for conserving biodiversity within realistic economic constraints(7). Here we present a systematic ecological and economic analysis of a climate adaptation problem in one of the world's most species-rich and threatened ecosystems: the South African fynbos. We discover a counterintuitive optimal investment strategy that switches twice between options as the available adaptation budget increases. We demonstrate that optimal investment is nonlinearly dependent on available resources, making the choice of how much to invest as important as determining where to invest and what actions to take. Our study emphasizes the importance of a sound analytical framework for prioritizing adaptation investments(4). Integrating ecological predictions in an economic decision framework will help support complex choices between adaptation options under severe uncertainty. Our prioritization method can be applied at any scale to minimize species loss and to evaluate the robustness of decisions to uncertainty about key assumptions. Y1 - 2011 U6 - https://doi.org/10.1038/NCLIMATE1227 SN - 1758-678X VL - 1 IS - 7 SP - 355 EP - 359 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Streich, Rita A1 - Becken, Michael T1 - Electromagnetic fields generated by finite-length wire sources: comparison with point dipole solutions JF - Geophysical prospecting N2 - In present-day land and marine controlled-source electromagnetic (CSEM) surveys, electromagnetic fields are commonly generated using wires that are hundreds of metres long. Nevertheless, simulations of CSEM data often approximate these sources as point dipoles. Although this is justified for sufficiently large source-receiver distances, many real surveys include frequencies and distances at which the dipole approximation is inaccurate. For 1D layered media, electromagnetic (EM) fields for point dipole sources can be computed using well-known quasi-analytical solutions and fields for sources of finite length can be synthesized by superposing point dipole fields. However, the calculation of numerous point dipole fields is computationally expensive, requiring a large number of numerical integral evaluations. We combine a more efficient representation of finite-length sources in terms of components related to the wire and its end points with very general expressions for EM fields in 1D layered media. We thus obtain a formulation that requires fewer numerical integrations than the superposition of dipole fields, permits source and receiver placement at any depth within the layer stack and can also easily be integrated into 3D modelling algorithms. Complex source geometries, such as wires bent due to surface obstructions, can be simulated by segmenting the wire and computing the responses for each segment separately. We first describe our finite-length wire expressions and then present 1D and 3D examples of EM fields due to finite-length sources for typical land and marine survey geometries and discuss differences to point dipole fields. KW - Electromagnetics KW - Mathematical formulation KW - Modelling KW - Numerical study Y1 - 2011 U6 - https://doi.org/10.1111/j.1365-2478.2010.00926.x SN - 0016-8025 VL - 59 IS - 2 SP - 361 EP - 374 PB - Wiley-Blackwell CY - Malden ER - TY - JOUR A1 - Schleussner, Carl-Friedrich A1 - Frieler, Katja A1 - Meinshausen, Malte A1 - Yin, J. A1 - Levermann, Anders T1 - Emulating Atlantic overturning strength for low emission scenarios consequences for sea-level rise along the North American east coast JF - Earth system dynamics N2 - In order to provide probabilistic projections of the future evolution of the Atlantic Meridional Overturning Circulation (AMOC), we calibrated a simple Stommel-type box model to emulate the output of fully coupled three-dimensional atmosphere-ocean general circulation models (AOGCMs) of the Coupled Model Intercomparison Project (CMIP). Based on this calibration to idealised global warming scenarios with and without interactive atmosphere-ocean fluxes and freshwater perturbation simulations, we project the future evolution of the AMOC mean strength within the covered calibration range for the lower two Representative Concentration Pathways (RCPs) until 2100 obtained from the reduced complexity carbon cycle-climate model MAGICC 6. For RCP3-PD with a global mean temperature median below 1.0 degrees C warming relative to the year 2000, we project an ensemble median weakening of up to 11% compared to 22% under RCP4.5 with a warming median up to 1.9 degrees C over the 21st century. Additional Greenland meltwater of 10 and 20 cm of global sea-level rise equivalent further weakens the AMOC by about 4.5 and 10 %, respectively. By combining our outcome with a multi-model sea-level rise study we project a dynamic sea-level rise along the New York City coastline of 4 cm for the RCP3-PD and of 8 cm for the RCP4.5 scenario over the 21st century. We estimate the total steric and dynamic sea-level rise for New York City to be about 24 cm until 2100 for the RCP3-PD scenario, which can hold as a lower bound for sea-level rise projections in this region, as it does not include ice sheet and mountain glacier contributions. Y1 - 2011 U6 - https://doi.org/10.5194/esd-2-191-2011 SN - 2190-4979 SN - 2190-4987 VL - 2 IS - 2 SP - 191 EP - 200 PB - Copernicus CY - Göttingen ER - TY - THES A1 - Meyer, Sven Walter Heinrich T1 - Entwicklung und Erprobung von methodischen Grundlagen zur Konzipierung eines Entscheidungshilfesystems für die Begründung von Extremstandorten Y1 - 2011 CY - Potsdam ER - TY - JOUR A1 - Krause, Rolf Harald A1 - Buse, Joern A1 - Matern, Andrea A1 - Schroeder, Boris A1 - Haerdtle, Werner A1 - Assmann, Thorsten T1 - Eresus kollari (Araneae: Eresidae) calls for heathland management JF - The Journal of arachnology N2 - Northwest Europe's largest heather-dominated sandy habitats are located in the nature reserve Luneburger Heide, Germany. Yet, even these appear to be losing their ability to support some of their stenotopic species such as the ladybird spider, Eresus kollari Rossi 1846, and are thus becoming increasingly important for the preservation of these species. The habitat requirements of this endangered spider species were investigated in order to obtain data that will help stabilize the last remnants of the species' population in northwest Germany. Several heathland habitats were surveyed by pitfall trapping during the mate-search period of the males. Two statistical methods were applied: logistic regression and boosted regression trees (BRT). Both methods showed that three habitat variables are of prime relevance in predicting the occurrence of E. kollari: a) thickness of the organic layer (a negative effect), b) soil temperature at a depth of 10 cm, and c) Calluna cover in the herb layer (both have positive effect). Our results show that choppering (removing above-ground biomass and most of O-layer) and burning are likely appropriate heathland management measures for the conservation of E. kollari. Such measures improve the species' habitat quality by creating a heterogenic (small-scaled) heathland structure with suitable microhabitats. As Calluna heathlands show a clear senescence of the dominant heather, it is essential that those habitat patches be conserved. Further measures, such as transfer experiments, are recommended. KW - Conservation management KW - habitat modeling KW - action plan KW - choppering KW - burning Y1 - 2011 SN - 0161-8202 SN - 1937-2396 VL - 39 IS - 3 SP - 384 EP - 392 PB - American Arachnological Society CY - College Park ER - TY - JOUR A1 - Pilz, Marco A1 - Parolai, Stefano A1 - Picozzi, Matteo A1 - Zschau, Jochen T1 - Evaluation of proxies for seismic site conditions in large urban areas the example of Santiago de Chile JF - Physics and chemistry of the earth N2 - Characterizing the local site response in large cities is an important step towards seismic hazard assessment. To this regard, single station seismic noise measurements were carried out at 146 sites in the northern part of Santiago de Chile. This extensive survey allowed the fundamental resonance frequency of the sedimentary cover, derived from horizontal-to-vertical (H/V) spectral ratios, to be mapped. By inverting the spectral ratios under the constraint of the thickness of the sedimentary cover, known from previous gravimetric measurements, local S-wave velocity profiles have been retrieved. After interpolation between the individual profiles, the resulting high resolution 3D S-wave velocity model allows the entire area, as well as deeper parts of the basin, to be represented in great detail. Since one lithology shows a great scatter in the velocity values only a very general correlation between S-wave velocity in the uppermost 30 m (v(s)(30)) and local geology is found. Local S-wave velocity profiles can serve as a key factor in seismic hazard assessment, since they allow an estimate of the amplification potential of the sedimentary cover. Mapping the intensity distribution of the 27 February 2010 Maule, Chile, event (Mw = 8.8) the results indicate that local amplification of the ground motion might partially explain the damage distribution and encourage the use of the low cost seismic noise techniques for the study of seismic site effects. KW - Ambient seismic noise KW - H/V ratio KW - Inversion KW - S-wave velocity KW - Site effects Y1 - 2011 U6 - https://doi.org/10.1016/j.pce.2011.01.007 SN - 1474-7065 VL - 36 IS - 16 SP - 1259 EP - 1266 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Deeken, Anke A1 - Thiede, Rasmus Christoph A1 - Sobel, Edward A1 - Hourigan, J. K. A1 - Strecker, Manfred T1 - Exhumational variability within the Himalaya of northwest India JF - Earth & planetary science letters N2 - In the Himalaya of Chamba, NW India, a major orographic barrier in front of the Greater Himalayan Range extracts a high proportion of the monsoonal rainfall along its southern slopes and effectively shields the orogen interior from moisture-bearing winds. Along a similar to 100-km-long orogen perpendicular transect, 28 new apatite fission track (AFT) and 30 new zircon (U-Th)/He (ZHe) cooling ages reveal marked variations in age distributions and long-term exhumation rates between the humid frontal range and the semi-arid orogen interior. On the southern topographic front, very young, elevation-invariant AFT ages of <4 Ma have been obtained that are concentrated in a similar to 30-km-wide zone; 1-D-thermal modeling suggests a Plio-Pleistocene mean erosion rate of 0.8-1.9 mm yr(-1). In contrast, AFT and ZHe ages within the orogen interior are older (4-9 and 7-18 Ma, respectively), are positively correlated with sample elevation, and yield lower mean erosion rates (0.3-0.9 mm yr(-1)). Protracted low exhumation rates within the orogen interior over the last similar to 15 Myr prevailed contemporaneously with overall humid conditions and an effective erosional regime within the southern Himalaya. This suggests that the frontal Dhauladar Range was sufficiently high during this time to form an orographic barrier, focusing climatically enhanced erosional processes and tectonic deformation there. Thrusting along the two frontal range-bounding thrust, the Main Central Thrust and the Main Boundary Thrusts, was initiated at least similar to 15 Ma ago and has remained localized since then. The lack of evidence for localized uplift farther north indicates either a rather flat decollement with no ramp or the absence of active duplex systems beneath the interior of Chamba. Exhumational variability within Chamba is best explained as the result of continuous thrusting along a major basal decollement, with a flat beneath the slowly exhuming internal compartments and a steep frontal ramp at the rapidly exhuming frontal range. The pattern in Chamba contrasts with what is observed elsewhere along the Himalaya, where exhumation is focused in a zone similar to 150 km north of the orogenic front. In the NW Himalaya, preserved High Himalayan Crystalline nappes and Lesser Himalayan windows alternate on a relatively small scale of <100 km; these alternations are closely correlated with the pattern of exhumation. Although the spatial distribution of high-exhumation zones varies considerably between individual Himalayan sectors, all of these zones are closely correlated with locally higher rock-uplift rates, sharp topographic discontinuities, and focused orographic precipitation, suggesting strong feedbacks between tectonically driven rock uplift, orographically enhanced precipitation, and erosional processes. KW - apatite fission-track KW - zircon uranium-thorium-helium KW - thermochronology KW - exhumation KW - Himalaya KW - Haimantas Y1 - 2011 U6 - https://doi.org/10.1016/j.epsl.2011.02.045 SN - 0012-821X VL - 305 IS - 1-2 SP - 103 EP - 114 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Schulz, Jennifer J. A1 - Cayuela, Luis A1 - Rey-Benayas, Jose M. A1 - Schröder-Esselbach, Boris T1 - Factors influencing vegetation cover change in Mediterranean Central Chile (1975-2008) JF - Applied vegetation science : official organ of the International Association for Vegetation Science N2 - Questions: Which are the factors that influence forest and shrubland loss and regeneration and their underlying drivers? Location: Central Chile, a world biodiversity hotspot. Methods: Using land-cover data from the years 1975, 1985, 1999 and 2008, we fitted classification trees and multiple logistic regression models to account for the relationship between different trajectories of vegetation change and a range of biophysical and socio-economic factors. Results: The variables that most consistently showed significant effects on vegetation change across all time-intervals were slope and distance to primary roads. We found that forest and shrubland loss on one side and regeneration on the other often displayed opposite patterns in relation to the different explanatory variables. Deforestation was positively related to distance to primary roads and to distance within forest edges and was favoured by a low insolation and a low slope. In turn, forest regeneration was negatively related to the distance to primary roads and positively to the distance to the nearest forest patch, insolation and slope. Shrubland loss was positively influenced by slope and distance to cities and primary roads and negatively influenced by distance to rivers. Conversely, shrubland regeneration was negatively related to slope, distance to cities and distance to primary roads and positively related to distance from existing forest patches and distance to rivers. Conclusions: This article reveals how biophysical and socioeconomic factors influence vegetation cover change and the underlying social, political and economical drivers. This assessment provides a basis for management decisions, considering the crucial role of perennial vegetation cover for sustaining biodiversity and ecosystem services. KW - Deforestation KW - Driving forces KW - Forest regeneration KW - Land-cover change KW - Shrubland regeneration Y1 - 2011 U6 - https://doi.org/10.1111/j.1654-109X.2011.01135.x SN - 1402-2001 VL - 14 IS - 4 SP - 571 EP - 582 PB - Wiley-Blackwell CY - Hoboken ER - TY - THES A1 - Fader, Marianela T1 - Flows of virtual land and water throught global trade of agricultural products Y1 - 2011 CY - Potsdam ER - TY - JOUR A1 - Konrad-Schmolke, Matthias A1 - Zack, Thomas A1 - O'Brien, Patrick J. A1 - Barth, Matthias T1 - Fluid migration above a subducted slab - Thermodynamic and trace element modelling of fluid-rock interaction in partially overprinted eclogite-facies rocks (Sesia Zone, Western Alps) JF - Earth & planetary science letters N2 - The amount and composition of subduction zone fluids and the effect of fluid-rock interaction at a slab-mantle interface have been constrained by thermodynamic and trace element modelling of partially overprinted blueschist-facies rocks from the Sesia Zone (Western Alps). Deformation-induced differences in fluid flux led to a partial preservation of pristine mineral cores in weakly deformed samples that were used to quantify Li, B, Stand Pb distribution during mineral growth, -breakdown and modification induced by fluid-rock interaction. Our results show that Li and 13 budgets are fluid-controlled, thus acting as tracers for fluid-rock interaction processes, whereas Stand Pb budgets are mainly controlled by the fluid-induced formation of epidote. Our calculations show that fluid-rock interaction caused significant Li and B depletion in the affected rocks due to leaching effects, which in turn can lead to a drastic enrichment of these elements in the percolating fluid. Depending on available fluid-mineral trace element distribution coefficients modelled fluid rock ratios were up to 0.06 in weakly deformed samples and at least 0.5 to 4 in shear zone mylonites. These amounts lead to time integrated fluid fluxes of up to 1.4-10(2) m(3) m(-2) in the weakly deformed rocks and 1-8-10(3) m(3) m(-2) in the mylonites. Combined thermodynamic and trace element models can be used to quantify metamorphic fluid fluxes and the associated element transfer in complex, reacting rock systems and help to better understand commonly observed fluid-induced trace element trends in rocks and minerals from different geodynamic environments. KW - fluid-rock interaction KW - subduction zone KW - fluid migration KW - slab-mantle interface KW - trace element transport Y1 - 2011 U6 - https://doi.org/10.1016/j.epsl.2011.09.025 SN - 0012-821X VL - 311 IS - 3-4 SP - 287 EP - 298 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Konrad-Schmolke, Matthias A1 - O'Brien, Patrick J. A1 - Zack, Thomas T1 - Fluid Migration above a Subducted Slab-Constraints on Amount, Pathways and Major Element Mobility from Partially Overprinted Eclogite-facies Rocks (Sesia Zone, Western Alps) JF - Journal of petrology N2 - The Western Alpine Sesia-Lanzo Zone (SLZ) is a sliver of eclogite-facies continental crust exhumed from mantle depths in the hanging wall of a subducted oceanic slab. Eclogite-facies felsic and basic rocks sampled across the internal SLZ show different degrees of retrograde metamorphic overprint associated with fluid influx. The weakly deformed samples preserve relict eclogite-facies mineral assemblages that show partial fluid-induced compositional re-equilibration along grain boundaries, brittle fractures and other fluid pathways. Multiple fluid influx stages are indicated by replacement of primary omphacite by phengite, albitic plagioclase and epidote as well as partial re-equilibration and/or overgrowths in phengite and sodic amphibole, producing characteristic step-like compositional zoning patterns. The observed textures, together with the map-scale distribution of the samples, suggest open-system, pervasive and reactive fluid flux across large rock volumes above the subducted slab. Thermodynamic modelling indicates a minimum amount of fluid of 0 center dot 1-0 center dot 5 wt % interacting with the wall-rocks. Phase relations and reaction textures indicate mobility of K, Ca, Fe and Mg, whereas Al is relatively immobile in these medium-temperature-high-pressure fluids. Furthermore, the thermodynamic models show that recycling of previously fractionated material, such as in the cores of garnet porphyroblasts, largely controls the compositional re-equilibration of the exhumed rock body. KW - fluid migration KW - subduction KW - fluid-rock interaction KW - Sesia Zone Y1 - 2011 U6 - https://doi.org/10.1093/petrology/egq087 SN - 0022-3530 VL - 52 IS - 3 SP - 457 EP - 486 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Lederer, Markus T1 - From CDM to REDD+ - what do we know for setting up effective and legitimate carbon governance? JF - Ecological economics N2 - This article compares two carbon governance instruments - the Clean Development Mechanism (CDM) and Reducing Emissions from Deforestation and Degradation (REDD+) - to assess lessons from the former for the latter regarding effectiveness and legitimacy of such instruments. The article argues that the CDM has a relatively high degree of output-oriented legitimacy resulting in effectiveness and some input-oriented legitimacy, with few discernible tradeoffs between them. In contrasting this to REDD+, the hypotheses are advanced that (i) output-oriented legitimacy/effectiveness can again be achieved but that (ii) a higher degree of input-oriented legitimacy is necessary for REDD+ and thus also a certain trade-off between the two forms of legitimacy can be expected. This is shown through comparing the technologies and methodologies, economic rationales, political support, regulatory structures, and environmental impacts of both instruments. KW - Reducing Emissions from Deforestation and Degradation (REDD plus ) KW - Clean Development Mechanism (CDM) KW - Effectiveness KW - Legitimacy Y1 - 2011 U6 - https://doi.org/10.1016/j.ecolecon.2011.02.003 SN - 0921-8009 VL - 70 IS - 11 SP - 1900 EP - 1907 PB - Elsevier CY - Amsterdam ER - TY - THES A1 - Chapligin, Bernhard T1 - From method develoment to climate reconstruction - oxygen isotope analysis of biogenic silica from Lake El'gygytgyn, NE Siberia Y1 - 2011 CY - Potsdam ER - TY - JOUR A1 - Moenickes, Sylvia A1 - Schneider, Anne-Kathrin A1 - Muehle, Lesley A1 - Rohe, Lena A1 - Richter, Otto A1 - Suhling, Frank T1 - From population-level effects to individual response: modelling temperature dependence in Gammarus pulex JF - The journal of experimental biology N2 - Population-level effects of global warming result from concurrent direct and indirect processes. They are typically described by physiologically structured population models (PSPMs). Therefore, inverse modelling offers a tool to identify parameters of individual physiological processes through population-level data analysis, e. g. the temperature dependence of growth from size-frequency data of a field population. Here, we make use of experiments under laboratory conditions, in mesocosms and field monitoring to determine the temperature dependence of growth and mortality of Gammarus pulex. We found an optimum temperature for growth of approximately 17 degrees C and a related temperature coefficient, Q(10), of 1.5 degrees C(-1), irrespective of whether we classically fitted individual growth curves or applied inverse modelling based on PSPMs to laboratory data. From a comparison of underlying data sets we conclude that applying inverse modelling techniques to population-level data results in meaningful response parameters for physiological processes if additional temperature-driven effects, including within-population interaction, can be excluded or determined independently. If this is not the case, parameter estimates describe a cumulative response, e. g. comprising temperature-dependent resource dynamics. Finally, fluctuating temperatures in natural habitats increased the uncertainty in parameter values. Here, PSPM should be applied for virtual monitoring in order to determine a sampling scheme that comprises important dates to reduce parameter uncertainty. KW - temperature response KW - temperature coefficient KW - Q(10) KW - optimum temperature KW - parameter estimation KW - inverse modelling Y1 - 2011 U6 - https://doi.org/10.1242/jeb.061945 SN - 0022-0949 VL - 214 IS - 21 SP - 3678 EP - 3687 PB - Company of Biologists Limited CY - Cambridge ER - TY - JOUR A1 - Weber, Marion A1 - Cardona, A. A1 - Valencia, V. A1 - Altenberger, Uwe A1 - Lopez-Martinez, M. A1 - Tobon, M. A1 - Zapata, Sebastian Henao A1 - Zapata, G. A1 - Concha, A. E. T1 - Geochemistry and geochronology of the Guajira Eclogites, northern Colombia evidence of a metamorphosed primitive Cretaceous Caribbean Island-arc JF - Geologica acta N2 - The chemical composition of eclogites, found as boulders in a Tertiary conglomerate from the Guajira Peninsula, Colombia suggests that these rocks are mainly metamorphosed basaltic andesites. They are depleted in LILE elements compared to MORB, have a negative Nb-anomaly and flat to enriched REE patterns, suggesting that their protoliths evolved in a subduction related tectonic setting. They show island-arc affinities and are similar to primitive island-arc rocks described in the Caribbean. The geochemical characteristics are comparable to low-grade greenschists from the nearby Etpana Terrane, which are interpreted as part of a Cretaceous intra-oceanic arc. These data support evidence that the eclogites and the Etpana terrane rocks formed from the same volcano-sedimentary sequence. Part of this sequence was accreted onto the margin and another was incorporated into the subduction channel and metamorphosed at eclogite facies conditions. Ar-40-Ar-39 ages of 79.2 +/- 1.1Ma and 82.2 +/- 2.5Ma determined on white micas, separated from two eclogite samples, are interpreted to be related to the cooling of the main metamorphic event. The formation of a common volcano-sedimentary protolith and subsequent metamorphism of these units record the ongoing Late Cretaceous continental subduction of the South American margin within the Caribbean intra-oceanic arc subduction zone. This gave way to an arc-continent collision between the Caribbean and the South American plates, where this sequence was exhumed after the Campanian. KW - Eclogites KW - Primitive island-arc KW - Geochronology KW - Guajira Peninsula KW - Colombia KW - Caribbean Y1 - 2011 U6 - https://doi.org/10.1344/105.000001740 SN - 1695-6133 VL - 9 IS - 3-4 SP - 425 EP - 443 PB - Facultat de Geologia, Divisio III, Ciències Experimentals i Matemàtiques, Universitat de Barcelona CY - Barcelona ER - TY - JOUR A1 - Akal, Cuneyt A1 - Koralay, O. Ersin A1 - Candan, Osman A1 - Oberhänsli, Roland A1 - Chen, Fukun T1 - Geodynamic significance of the early triassic karaburun granitoid (Western Turkey) for the opening history of Neo-Tethys JF - Turkish journal of earth sciences = Türk yerbilimleri dergisi N2 - The Karaburun Peninsula, which is considered part of the Anatolide-Tauride Block of Turkey, contains clastic and carbonate sequences deposited on the northern margin of Gondwana. The Palaeozoic clastic sequence, which is intruded by the Early Triassic granitoid and tectonically overlies a Mesozoic melange sequence, can be divided into three subunits: a lower clastic subunit consisting of a sandstone-shale alternation, an upper clastic subunit consisting of black chert-bearing shales, sandstone and conglomerate, and a Permo-Carboniferous carbonate subunit. The lower Triassic Karaburun I-type granitoid has a high initial Sr-87/Sr-86 ratio (0.709021-0.709168), and low Nd-143/Nd-144 ratio (0.512004-0.512023) and epsilon Nd (-5.34 to -5.70) isotopic values. Geochronological data indicate a crystallization (intrusion) age of 247.1 +/- 2.0 Ma (Scythian). Geochemically, the acidic magmatism reflects a subduction-related continental-arc basin tectonic setting, which can be linked to the opening of the northern branch of Neo-Tethys as a continental back-arc rifting basin on the northern margin of Gondwana. This can be related to the closure through southward subduction of the Palaeotethys Ocean beneath Gondwana. KW - Karaburun KW - Neo-Tethys KW - Palaeo-Tethys KW - diorite KW - Triassic KW - magmatism Y1 - 2011 U6 - https://doi.org/10.3906/yer-1008-1 SN - 1300-0985 VL - 20 IS - 3 SP - 255 EP - 271 PB - Tübitak CY - Ankara ER - TY - JOUR A1 - Iroume, Andres A1 - Carey, Patricio A1 - Bronstert, Axel A1 - Huber, Anton A1 - Palacios, Hardin T1 - GIS application of USLE and MUSLE to estimate erosion and suspended sediment load in experimental catchments, Valdivia, Chile JF - Revista técnica de la Facultad de Ingenieria N2 - This paper presents the results of a research aimed to quantify suspended sediment transport in three experimental catchments in southern Chile, to compare measured suspended sediment load with estimated erosion using the Universal Soil Loss Equation (USLE) applied in a GIS environment and to validate de Modified Universal Soil Loss Equation (MUSLE) used to estimate suspended sediment loads from forest catchments. The catchments are Los Pinos (94.2 ha), Los Ulmos 1 (12.6 ha) and Los Ulmos 2 (17.7 ha). Soil losses estimated with USLE for the three catchments are higher than those measured in runoff experimental lots under bare soil conditions, which could indicate an overestimation of the LS calculated in GIS and the fact that the USLE model does not compute sediment deposit and storage within the catchment. A statistical significant relation was found between measured and estimated (MUSLE) suspended sediment load, which would indicate that this model could be applied to estimate suspended sediment load from small catchments in southern Chile. KW - suspended sediments KW - USLE KW - MUSLE KW - experimental catchments Y1 - 2011 SN - 0254-0770 VL - 34 IS - 2 SP - 119 EP - 128 PB - Facultad de Ingenieria Universidad del Zulia CY - Maracaibo ER - TY - JOUR A1 - Moreno, Marcelo Spegiorin A1 - Melnick, Daniel A1 - Rosenau, M. A1 - Bolte, John A1 - Klotz, Jan A1 - Echtler, Helmut Peter A1 - Báez, Juan Carlos A1 - Bataille, Klaus A1 - Chen, J. A1 - Bevis, M. A1 - Hase, H. A1 - Oncken, Onno T1 - Heterogeneous plate locking in the South-Central Chile subduction zone building up the next great earthquake JF - Earth & planetary science letters N2 - We use Global Positioning System (GPS) velocities and kinematic Finite Element models (FE-models) to infer the state of locking between the converging Nazca and South America plates in South-Central Chile (36 degrees S -46 degrees S) and to evaluate its spatial and temporal variability. GPS velocities provide information on earthquake-cycle deformation over the last decade in areas affected by the megathrust events of 1960 (M-w = 9.5) and 2010 (M-w = 8.8). Our data confirm that a change in surface velocity patterns of these two seismotectonic segments can be related to their different stages in the seismic cycle: Accordingly, the northern (2010) segment was in a final stage of interseismic loading whereas the southern (1960) segment is still in a postseismic stage and undergoes a prolonged viscoelastic mantle relaxation. After correcting the signals for mantle relaxation, the residual GPS velocity pattern suggests that the plate interface accumulates slip deficit in a spatially and presumably temporally variable way towards the next great event. Though some similarity exist between locking and 1960 coseismic slip, extrapolating the current, decadal scale slip deficit accumulation towards the similar to 300-yr recurrence times of giant events here does neither yield the slip distribution nor the moment magnitude of the 1960 earthquake. This suggests that either the locking pattern is evolving in time (to reconcile a slip deficit distribution similar to the 1960 earthquake) or that some asperities are not persistent over multiple events. The accumulated moment deficit since 1960 suggests that highly locked patches in the 1960 segment are already capable of producing a M similar to 8 event if triggered to fail by stress transfer from the 2010 event. KW - GPS KW - Chile KW - Maule KW - locking degree KW - postseismic deformation KW - earthquake cycle Y1 - 2011 U6 - https://doi.org/10.1016/j.epsl.2011.03.025 SN - 0012-821X VL - 305 IS - 3-4 SP - 413 EP - 424 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Scherler, Dirk A1 - Bookhagen, Bodo A1 - Strecker, Manfred T1 - Hillslope-glacier coupling the interplay of topography and glacial dynamics in High Asia JF - Journal of geophysical research : Earth surface N2 - High Asian glacial landscapes have large variations in topographic relief and the size and steepness of snow accumulation areas. Associated differences in glacial cover and dynamics allow a first-order determination of the dominant processes shaping these landscapes. Here we provide a regional synthesis of the topography and flow characteristics of 287 glaciers across High Asia using digital elevation analysis and remotely sensed glacier surface velocities. Glaciers situated in low-relief areas on the Tibetan Plateau are mainly nourished by direct snowfall, have little or no debris cover, and have a relatively symmetrical distribution of velocities along their length. In contrast, avalanche-fed glaciers with steep accumulation areas, which occur at the deeply incised edges of the Tibetan Plateau, are heavily covered with supraglacial debris, and flow velocities are highest along short segments near their headwalls but greatly reduced along their debris-mantled lower parts. The downstream distribution of flow velocities suggests that the glacial erosion potential is progressively shifted upstream as accumulation areas get steeper and hillslope debris fluxes increase. Our data suggest that the coupling of hillslopes and glacial dynamics increases with topographic steepness and debris cover. The melt-lowering effect of thick debris cover allows the existence of glaciers even when they are located entirely below the snow line. However, slow velocities limit the erosion potential of such glaciers, and their main landscape-shaping contribution may simply be the evacuation of debris from the base of glacial headwalls, which inhibits the formation of scree slopes and thereby allows ongoing headwall retreat by periglacial hillslope processes. We propose a conceptual model in which glacially influenced plateau margins evolve from low-relief to high-relief landscapes with distinctive contributions of hillslope processes and glaciers to relief production and decay. Y1 - 2011 U6 - https://doi.org/10.1029/2010JF001751 SN - 0148-0227 VL - 116 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Barthold, Frauke Katrin A1 - Tyralla, Christoph A1 - Schneider, Katrin A1 - Vache, Kellie B. A1 - Frede, Hans-Georg A1 - Breuer, Lutz T1 - How many tracers do we need for end member mixing analysis (EMMA)? - a sensitivity analysis JF - Water resources research N2 - End member mixing analysis (EMMA) is a commonly applied method to identify and quantify the dominant runoff producing sources of water. It employs tracers to determine the dimensionality of the hydrologic system. Many EMMA studies have been conducted using two to six tracers, with some of the main tracers being Ca, Na, Cl(-), water isotopes, and alkalinity. Few studies use larger tracer sets including minor trace elements such as Li, Rb, Sr, and Ba. None of the studies has addressed the question of the tracer set size and composition, despite the fact that these determine which and how many end members (EM) will be identified. We examine how tracer set size and composition affects the conceptual model that results from an EMMA. We developed an automatic procedure that conducts EMMA while iteratively changing tracer set size and composition. We used a set of 14 tracers and 9 EMs. The validity of the resulting conceptual models was investigated under the aspects of dimensionality, EM combinations, and contributions to stream water. From the 16,369 possibilities, 23 delivered plausible results. The resulting conceptual models are highly sensitive to the tracer set size and composition. The moderate reproducibility of EM contributions indicates a still missing EM. It also emphasizes that the major elements are not always the most useful tracers and that larger tracer sets have an enhanced capacity to avoid false conclusions about catchment functioning. The presented approach produces results that may not be apparent from the traditional approach and it is a first step to add the idea of statistical significance to the EMMA approach. Y1 - 2011 U6 - https://doi.org/10.1029/2011WR010604 SN - 0043-1397 VL - 47 IS - 7360 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Carminati, Andrea A1 - Schneider, Christoph L. A1 - Moradi, Ahmad B. A1 - Zarebanadkouki, Mohsen A1 - Vetterlein, Doris A1 - Vogel, Hans-Jörg A1 - Hildebrandt, Anke A1 - Weller, Ulrich A1 - Schüler, Lennart A1 - Oswald, Sascha T1 - How the rhizosphere may favor water availability to roots JF - Vadose zone journal N2 - Recent studies have shown that rhizosphere hydraulic properties may differ from those of the bulk soil. Specifically, mucilage at the root-soil interface may increase the rhizosphere water holding capacity and hydraulic conductivity during drying. The goal of this study was to point out the implications of such altered rhizosphere hydraulic properties for soil-plant water relations. We addressed this problem through modeling based on a steady-rate approach. We calculated the water flow toward a single root assuming that the rhizosphere and bulk soil were two concentric cylinders having different hydraulic properties. Based on our previous experimental results, we assumed that the rhizosphere had higher water holding capacity and unsaturated conductivity than the bulk soil. The results showed that the water potential gradients in the rhizosphere were much smaller than in the bulk soil. The consequence is that the rhizosphere attenuated and delayed the drop in water potential in the vicinity of the root surface when the soil dried. This led to increased water availability to plants, as well as to higher effective conductivity under unsaturated conditions. The reasons were two: (i) thanks to the high unsaturated conductivity of the rhizosphere, the radius of water uptake was extended from the root to the rhizosphere surface; and (ii) thanks to the high soil water capacity of the rhizosphere, the water depletion in the bulk soil was compensated by water depletion in the rhizosphere. We conclude that under the assumed conditions, the rhizosphere works as an optimal hydraulic conductor and as a reservoir of water that can be taken up when water in the bulk soil becomes limiting. Y1 - 2011 U6 - https://doi.org/10.2136/vzj2010.0113 SN - 1539-1663 VL - 10 IS - 3 SP - 988 EP - 998 PB - Soil Science Society of America CY - Madison ER - TY - JOUR A1 - Marwan, Norbert T1 - How to avoid potential pitfalls in recurrence plot based data analysis JF - International journal of bifurcation and chaos : in applied sciences and engineering N2 - Recurrence plots and recurrence quantification analysis have become popular in the last two decades. Recurrence based methods have on the one hand a deep foundation in the theory of dynamical systems and are on the other hand powerful tools for the investigation of a variety of problems. The increasing interest encompasses the growing risk of misuse and uncritical application of these methods. Therefore, we point out potential problems and pitfalls related to different aspects of the application of recurrence plots and recurrence quantification analysis. KW - Recurrence plot KW - recurrence quantification analysis KW - time series analysis KW - pitfalls Y1 - 2011 U6 - https://doi.org/10.1142/S0218127411029008 SN - 0218-1274 VL - 21 IS - 4 SP - 1003 EP - 1017 PB - World Scientific CY - Singapore ER - TY - THES A1 - Olaka, Lydia Atieno T1 - Hydrology across scales : sensitivity of East African lakes to climate changes T1 - Sensitivität auf Ostafrikanischen Riftseen zu Klimawandel N2 - The lakes of the East African Rift System (EARS) have been intensively studied to better understand the influence of climate change on hydrological systems. The exceptional sensitivity of these rift lakes, however, is both a challenge and an opportunity when trying to reconstruct past climate changes from changes in the hydrological budget of lake basins on timescales 100 to 104 years. On one hand, differences in basin geometrics (shape, area, volume, depth), catchment rainfall distributions and varying erosion-deposition rates complicate regional interpretation of paleoclimate information from lacustrine sediment proxies. On the other hand, the sensitivity of rift lakes often provides paleoclimate records of excellent quality characterized by a high signal-to-noise ratio. This study aims at better understanding of the climate-proxy generating process in rift lakes by parameterizing the geomorphological and hydroclimatic conditions of a particular site providing a step towards the establishment of regional calibrations of transfer functions for climate reconstructions. The knowledge of the sensitivity of a lake basin to climate change furthermore is crucial for a better assessment of the probability of catastrophic changes in the future, which bear risks for landscapes, ecosystems, and organisms of all sorts, including humans. Part 1 of this thesis explores the effect of the morphology and the effective moisture of a lake catchment. The availability of digital elevation models (DEM) and gridded climate data sets facilitates the comparison of the morphological and hydroclimatic conditions of rift lakes. I used the hypsometric integral (HI) calculated from Shuttle Radar Topography Mission (SRTM) data to describe the morphology of ten lake basins in Kenya and Ethiopia. The aridity index (AI) describing the difference in the precipitation/evaporation balance within a catchment was used to compare the hydroclimatic of these basins. Correlating HI and AI with published Holocene lake-level variations revealed that lakes responding sensitively to relatively moderate climate change are typically graben shaped and characterized by a HI between 0.23-0.30, and relatively humid conditions with AI >1. These amplifier lakes, a term first introduced but not fully parameterized by Alayne Street-Perrott in the early 80s, are unexceptionally located in the crest of the Kenyan and Ethiopian domes. The non-amplifier lakes in the EARS either have lower HI 0.13-0.22 and higher AI (>1) or higher HI (0.31-0.37) and low AI (<1), reflecting pan-shaped morphologies with more arid hydroclimatic conditions. Part 2 of this work addresses the third important factor to be considered when using lake-level and proxy records to unravel past climate changes in the EARS: interbasin connectivity and groundwater flow through faulted and porous subsurface lithologies in a rift setting. First, I have compiled the available hydrogeological data including lithology, resistivity and water-well data for the adjacent Naivasha and Elmenteita-Nakuru basins in the Central Kenya Rift. Using this subsurface information and established records of lake-level decline at the last wet-dry climate transitions, i.e., the termination of the African Humid Period (AHP, 15 to 5 kyr BP), I used a linear decay model to estimate typical groundwater flow between the two basins. The results suggest a delayed response of the groundwater levels of ca. 5 kyrs if no recharge of groundwater occurs during the wet-dry transition, whereas the lag is 2-2.7 kyrs only using the modern recharge of ca. 0.52 m/yr. The estimated total groundwater flow from higher Lake Naivasha (1,880 m a.s.l. during the AHP) to Nakuru-Elmenteita (1,770 m) was 40 cubic kilometers. The unexpectedly large volume, more than half of the volume of the paleo-Lake Naivasha during the Early Holocene, emphasizes the importance of groundwater in hydrological modeling of paleo-lakes in rifts. Moreover, the subsurface connectivity of rift lakes also causes a significant lag time to the system introducing a nonlinear component to the system that has to be considered while interpreting paleo-lake records. Part 3 of this thesis investigated the modern intraseasonal precipitation variability within eleven lake basins discussed in the first section of the study excluding Lake Victoria and including Lake Tana. Remotely sensed rainfall estimates (RFE) from FEWS NET for 1996-2010, are used for the, March April May (MAM) July August September (JAS), October November (ON) and December January February (DJF). The seasonal precipitation are averaged and correlated with the prevailing regional and local climatic mechanisms. Results show high variability with Biennial to Triennial precipitation patterns. The spatial distribution of precipitation in JAS are linked to the onset and strength of the Congo Air Boundary (CAB) and Indian Summer Monsoon (ISM) dynamics. while in ON they are related to the strength of Positive ENSO and IOD phases This study describes the influence of graben morphologies, extreme climate constrasts within catchments and basins connectivity through faults and porous lithologies on rift lakes. Hence, it shows the importance of a careful characterization of a rift lake by these parameters prior to concluding from lake-level and proxy records to climate changes. Furthermore, this study highlights the exceptional sensitivity of rift lakes to relatively moderate climate change and its consequences for water availability to the biosphere including humans. N2 - Die Seen des Ostafrikanischen Riftsystems (EARS) wurden bereits intensiv untersucht, um den Einfluss des Klimawandels auf das hydrologische Systeme besser verstehen zu können. Dabei stellt die außergewöhnliche Sensitivität dieser Riftseen sowohl eine Herausforderung als auch eine Möglichkeit dar, um den historischen Klimawandel von dem hydrologischen Budget der Seebecken auf Zeitskalen von 10 bis 10000 Jahre abzuleiten. Auf der einen Seite verkomplizieren verschiedene Beckengeometrien (Form, Fläche, Volumen, Tiefe), unterschiedliche Niederschlagsverteilungen der einzelnen Zuflüsse und variierende Erosions- und Sedimentationsraten, die aus den Informationen von Seesedimenten generierten, regionalen Interpretationen des Paleoklimas. Andererseits ergibt sich aus der hohen Sensitivität der Riftseen eine exzellente Datenqualität, was sich in dem hohen Signal - Rausch-Verhältnis widerspiegelt. Das Ziel meiner Untersuchungen ist das verbesserte Verständlichkeit der Klimainformationen generierenden Prozesse in den Riftseen als Voraussetzung für weitere Klimarekonstruktion. Fortschritte gab es vor allem in der Entwicklung von regionalen Kalibrationen durch die Parametrisierung der geomorphologischen und hydroklimatischen Gegebenheiten einer wichtigen Lokalität, wodurch es jetzt möglich ist, von Sedimentfunden auf die Umgebungsbedingungen Rückschlüsse zu ziehen. Das Wissen um die Reaktion der Seebecken auf Klimaschwankungen ist unerlässlich für eine bessere Abschätzung der Wahrscheinlichkeit von katastrophalen Änderungen in der Zukunft:ein Szenario das sowohl für Umwelt, Ökosysteme und Organismen, einschließlich des Menschen, Risiken birgt. Im ersten Teil meiner Doktorarbeit untersuche ich den Effekt der Morphologie und der effektiven Feuchtigkeit auf das Einzugsgebiet eines Sees. Die Verfügbarkeit von digitalen Höhenmodellen (DEM) und gerasterten Klimadatensätzen ermöglicht den Vergleich von morphologischen und hydroklimatischen Bedingungen der Riftseen. Ich nutzte das hypsometrische Integral (HI), berechnet aus Daten der “Shuttle Radar Topography Mission (SRTM)”, um die Morphologie von zehn Seebecken in Kenia und Äthopien zu beschreiben. Der Dürreindex (AI), der die Differenz von Niederschlag zu Verdunstung innerhalb eines Einzugsgebietes beschreibt, wurde benutzt, um das Hydroklima dieser Becken zu vergleichen. Die Korrelation von hypsometrischem Integral und Dürreindex mit publizierten holozänen Seespiegelschwankungen zeigte, dass vor allem Seen mit kleiner Oberfläche und großer Tiefe (Grabenform), charakterisiert durch ein HI von 0.23-0.30 und feuchte Bedingungen mit einem AI > 1, empfindlich auf relativ moderate Klimaänderungen reagieren. Diese “verstärkenden” Seen (amplifier lakes), ein Begriff der von Alayne Street-Perrott in den Achzigerjahren eingeführt wurde aber bis heute nicht völlig quantitativ definiert ist, sind ohne Ausnahme in den tiefen Gräben der kenianischen und äthiopischen Dome zu finden. Seen innerhalb des EARS, die nicht derart empfindlich reagieren, haben entweder ein niedrigeres HI von 0.13-0.22 und einen höheren AI (>1) oder ein höherers HI (0.31-0.37) aber einen niedrigen AI (<1) und zeigen großflächige, flache Morphologien (Pfannenform) unter trockenen klimatischen Bedingungen. Der zweite Teil der Arbeit beschäftigt sich mit einem weiteren wichtigen Faktor innerhalb der Klimarekonstruktion, wenn Seespiegelschwankungen und indirekte Messungen (Proxies) betrachtet werden:den störungsbezogenen und porösen Gesteinsschichten geschuldeten Grundwasserverbindungen zwischen den Becken. Als erstes habe ich die vorhandenen hydrogeologischen Daten bestehend aus den Gesteinsformationen, deren Widerstandsfähigkeit und den wasserbezogenen Bohrdaten für die Seen Naivasha und Elementaita-Nakuru zusammengestellt. Mit diesen bereits etablierten Untergrunddaten, z.B. zum Seespiegelrückgang am letzten Übergang von feuchtem zum trockeneren Klima am Ende der afrikanischen Feuchtperiode (AHP) um 15000 bis 5000 Jahre vor heute, schätzte ich den typischen Grundwasserfluss zwischen den beiden benachbarten Becken mittels eines linearen Modells ab. Die Ergebnisse zeigen eine Zeitverzögerung der Grundwasserspiegelanpassung um ca. 5000 Jahre an, falls keine Auffüllung der Grundwasserzufuhr zum Ende der letzten Feuchtperiode eintrat. In heutiger Zeit, ist bedingt durch die Grundwassererzufuhr von ca. 0.52 m/Jahr, nur eine Zeitverzögerung um ca. 2000-2700 Jahre zu sehen. Der geschätzte totale Grundwasserfluss vom höher gelegenden Naivasha See (1880 m über dem Meeresspiegel zum Ende der AHP) zum Elementaita-Nakuru See (1770 m) betrug 40 km3. Dieses unerwartet große Volumen, mehr als die Hälfte des Volumens vom Naivasha See während des frühen Holozäns, verdeutlicht, dass das Grundwasser für die hydrologische Modellierung von Paleoseen in Riftgebieten unbedingt mit einbezogen werden muss. Darüber hinaus führt die Grundwasserverbindung dieser Riftseen zu einer Zeitverzögerung in deren Reaktionen, was eine nichtlineare Komponente darstellt und bei jeder Interpretation von Paleoseespiegeldaten beachtet werden muss. Der dritte Teil dieser Arbeit untersucht die intrasaisonale Niederschlagsvariabilität innerhalb von 11 Einzugsgebieten die im ersten Teil Arbeit vorgestellt wurden, mit Ausnahme des Viktoriasees, aber inklusive des Tanasees. Aus Satellitenbilddaten des FEWS NET der Jahre 1996-2010 wurden Niederschlagsabschätzungen für die Monatsreihen März-April-Mai (MAM), Juli-August-September (JAS), Oktober-November (ON) und Dezember-Januar-Februar (DJF) berechnet. Der jahreszeitliche Niederschlag wurde gemittelt und mit den dominierenden regionalen und lokalen Klimafaktoren korreliert. Die Ergebnisse zeigen eine deutliche zwei- bis dreijährige Niederschlagsvariabilität. Die räumliche Niederschlagsverteilung innerhalb des Ostafrikanische Rifts im JAS ist an die Ausbildung und Stärke der Kongoluftmassengrenze (CAB) und an die Dynamik des Indischen Sommermonsuns gekoppelt, während sie im ON an die Stärke der positiven ENSO und IOD Phasen gebunden ist. Diese Doktorarbeit beschreibt den Einfluss von Grabenmorphologien, extremen Klimakontrasten innerhalb der Zuflussgebiete und die unterirdischen Beckenverbindung durch Störungszonen und poröse Gesteinsschichten zwischen den Riftseen. Damit zeigt sie die Unerlässlichkeit einer genauen Charakterisierung von Riftseen durch morphologische und klimatische Parameter, bevor von Seespiegelschwankungen und indirekten Datensätzen auf Klimaänderungen geschlossen werden kann. Desweiteren stellt diese Arbeit die hohe Empfindsamkeit dieser Seen gegenüber relativ moderaten Klimaänderungen und deren Konsequenzen für die insgesamte Wasserverfügbarkeit heraus. KW - Ostafrikanisches Riftsystem KW - Klima KW - verstärkende Seen KW - Grundwasser KW - Skalierung KW - East African Rift System KW - Climate KW - Amplifier Lakes KW - Groundwater KW - Scaling Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-55029 ER - TY - JOUR A1 - Donges, Jonathan A1 - Donner, Reik Volker A1 - Rehfeld, Kira A1 - Marwan, Norbert A1 - Trauth, Martin H. A1 - Kurths, Jürgen T1 - Identification of dynamical transitions in marine palaeoclimate records by recurrence network analysis JF - Nonlinear processes in geophysics N2 - The analysis of palaeoclimate time series is usually affected by severe methodological problems, resulting primarily from non-equidistant sampling and uncertain age models. As an alternative to existing methods of time series analysis, in this paper we argue that the statistical properties of recurrence networks - a recently developed approach - are promising candidates for characterising the system's nonlinear dynamics and quantifying structural changes in its reconstructed phase space as time evolves. In a first order approximation, the results of recurrence network analysis are invariant to changes in the age model and are not directly affected by non-equidistant sampling of the data. Specifically, we investigate the behaviour of recurrence network measures for both paradigmatic model systems with non-stationary parameters and four marine records of long-term palaeoclimate variations. We show that the obtained results are qualitatively robust under changes of the relevant parameters of our method, including detrending, size of the running window used for analysis, and embedding delay. We demonstrate that recurrence network analysis is able to detect relevant regime shifts in synthetic data as well as in problematic geoscientific time series. This suggests its application as a general exploratory tool of time series analysis complementing existing methods. Y1 - 2011 U6 - https://doi.org/10.5194/npg-18-545-2011 SN - 1023-5809 VL - 18 IS - 5 SP - 545 EP - 562 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Kuhn, Daniela A1 - Ohrnberger, Matthias A1 - Dahm, Torsten T1 - Imaging a shallow salt diapir using ambient seismic vibrations beneath the densely built-up city area of Hamburg, Northern Germany JF - Journal of seismology N2 - Salt diapirs are common features of sedimentary basins. If close to the surface, they can bear a significant hazard due to possible dissolution sinkholes, karst formation and collapse dolines or their influence on ground water chemistry. We investigate the potential of ambient vibration techniques to map the 3-D roof morphology of shallow salt diapirs. Horizontal-to-vertical (H/V) spectral peaks are derived at more than 900 positions above a shallow diapir beneath the city area of Hamburg, Germany, and are used to infer the depth of the first strong impedance contrast. In addition, 15 small-scale array measurements are conducted at different positions in order to compute frequency-dependent phase velocities of Rayleigh waves between 0.5 and 25 Hz. The dispersion curves are inverted together with the H/V peak frequency to obtain shear-wave velocity profiles. Additionally, we compare the morphology derived from H/V and array measurements to borehole lithology and a gravity-based 3-D model of the salt diapir. Both methods give consistent results in agreement with major features indicated by the independent data. An important result is that H/V and array measurements are better suited to identify weathered gypsum caprocks or gypsum floaters, while gravity-derived models better sample the interface between sediments and homogeneous salt. We further investigate qualitatively the influence of the 3-D subsurface topography of the salt diapir on the validity of local 1-D inversion results from ambient vibration dispersion curve inversion. KW - Ambient seismic vibrations KW - H/V method KW - Array measurements KW - Salt diapir KW - 3-D effects Y1 - 2011 U6 - https://doi.org/10.1007/s10950-011-9234-y SN - 1383-4649 VL - 15 IS - 3 SP - 507 EP - 531 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Nass, Andrea A1 - van Gasselt, S. A1 - Jaumann, Ralf A1 - Asche, Hartmut T1 - Implementation of cartographic symbols for planetary mapping in geographic information systems JF - Planetary and space science N2 - The steadily growing international interest in the exploration of planets in our Solar System and many advances in the development of space-sensor technology have led to the launch of a multitude of planetary missions to Mercury, Venus, the Earth's moon, Mars and various Outer-Solar System objects, such as the Jovian and Saturnian satellites. Camera instruments carried along on these missions image surfaces in different wavelength ranges and under different viewing angles, permitting additional data to be derived, such as spectral data or digital terrain models. Such data enable researchers to explore and investigate the development of planetary surfaces by analyzing and interpreting the inventory of surface units and structures. Results of such work are commonly abstracted and represented in thematic, mostly geological and geomorphological, maps. In order to facilitate efficient collaboration among different planetary research disciplines, mapping results need to be prepared, described, managed, archived, and visualized in a uniform way. These tasks have been increasingly carried out by means of computer-based geographic information systems (GIS or Cl systems) which have come to be widely employed in the field of planetary research since the last two decades. In this paper we focus on the simplification of mapping processes, putting specific emphasis on a cartographically correct visualization of planetary mapping data using GIS-based environments. We present and discuss the implementation of a set of standardized cartographic symbols for planetary mapping based on the Digital Cartographic Standard for Geologic Map Symbolization as prepared by the United States Geological Survey (USGS) for the Federal Geographic Data Committee (FGDC). Furthermore, we discuss various options to integrate this symbol catalog into generic GI systems, and more specifically into the Environmental Systems Research Institute's (ESRI) ArcGIS environment, and focus on requirements for symbol definitions in the field of planetary mapping. A symbology of this type can be embedded into any modular GIS environment capable in dealing with external stand-alone as well as database-driven management of symbol sets. Using such a uniform GIS-based symbol catalog will give the research community access to map results already cartographically elaborated, enabling them to create digital maps as a secondary data source in subsequent studies. KW - Symbology KW - Geomorphological mapping KW - Geologic mapping KW - Planetary cartography KW - Geographic information systems KW - Database model Y1 - 2011 U6 - https://doi.org/10.1016/j.pss.2010.08.022 SN - 0032-0633 VL - 59 IS - 11-12 SP - 1255 EP - 1264 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Rivera Villarreyes, C. A. A1 - Baroni, Gabriele A1 - Oswald, Sascha T1 - Integral quantification of seasonal soil moisture changes in farmland by cosmic-ray neutrons JF - Hydrology and earth system sciences : HESS N2 - Soil moisture at the plot or hill-slope scale is an important link between local vadose zone hydrology and catchment hydrology. However, so far only a few methods are on the way to close this gap between point measurements and remote sensing. One new measurement methodology that could determine integral soil moisture at this scale is the aboveground sensing of cosmic-ray neutrons, more precisely of ground albedo neutrons. The present study performed ground albedo neutron sensing (GANS) at an agricultural field in northern Germany. To test the method it was accompanied by other soil moisture measurements for a summer period with corn crops growing on the field and a later autumn-winter period without crops and a longer period of snow cover. Additionally, meteorological data and aboveground crop biomass were included in the evaluation. Hourly values of ground albedo neutron sensing showed a high statistical variability. Six-hourly values corresponded well with classical soil moisture measurements, after calibration based on one reference dry period and three wet periods of a few days each. Crop biomass seemed to influence the measurements only to minor degree, opposed to snow cover which has a more substantial impact on the measurements. The latter could be quantitatively related to a newly introduced field neutron ratio estimated from neutron counting rates of two energy ranges. Overall, our study outlines a procedure to apply the ground albedo neutron sensing method based on devices now commercially available, without the need for accompanying numerical simulations and suited for longer monitoring periods after initial calibration. Y1 - 2011 U6 - https://doi.org/10.5194/hess-15-3843-2011 SN - 1027-5606 VL - 15 IS - 12 SP - 3843 EP - 3859 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Fader, Marianelle A1 - Gerten, Dieter A1 - Thammer, M. A1 - Heinke, J. A1 - Lotze-Campen, Hermann A1 - Lucht, Wolfgang A1 - Cramer, Wolfgang T1 - Internal and external green-blue agricultural water footprints of nations, and related water and land savings through trade JF - Hydrology and earth system sciences : HESS N2 - The need to increase food production for a growing world population makes an assessment of global agricultural water productivities and virtual water flows important. Using the hydrology and agro-biosphere model LPJmL, we quantify at 0.5 degrees resolution the amount of blue and green water (irrigation and precipitation water) needed to produce one unit of crop yield, for 11 of the world's major crop types. Based on these, we also quantify the agricultural water footprints (WFP) of all countries, for the period 1998-2002, distinguishing internal and external WFP (virtual water imported from other countries) and their blue and green components, respectively. Moreover, we calculate water savings and losses, and for the first time also land savings and losses, through international trade with these products. The consistent separation of blue and green water flows and footprints shows that green water globally dominates both the internal and external WFP (84% of the global WFP and 94% of the external WFP rely on green water). While no country ranks among the top ten with respect to all water footprints calculated here, Pakistan and Iran demonstrate high absolute and per capita blue WFP, and the US and India demonstrate high absolute green and blue WFPs. The external WFPs are relatively small (6% of the total global blue WFP, 16% of the total global green WFP). Nevertheless, current trade of the products considered here saves significant water volumes and land areas (similar to 263 km(3) and similar to 41 Mha, respectively, equivalent to 5% of the sowing area of the considered crops and 3.5% of the annual precipitation on this area). Relating the proportions of external to internal blue/green WFP to the per capita WFPs allows recognizing that only a few countries consume more water from abroad than from their own territory and have at the same time above-average WFPs. Thus, countries with high per capita water consumption affect mainly the water availability in their own country. Finally, this study finds that flows/savings of both virtual water and virtual land need to be analysed together, since they are intrinsically related. Y1 - 2011 U6 - https://doi.org/10.5194/hess-15-1641-2011 SN - 1027-5606 VL - 15 IS - 5 SP - 1641 EP - 1660 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Roux, E. A1 - Moorkamp, Max A1 - Jones, Alan G. A1 - Bischoff, Monika A1 - Endrun, Brigitte A1 - Lebedev, Sergei A1 - Meier, Thomas T1 - Joint inversion of long-period magnetotelluric data and surface-wave dispersion curves for anisotropic structure application to data from Central Germany JF - Geophysical research letters N2 - Geophysical datasets sensitive to different physical parameters can be used to improve resolution of Earth's internal structure. Herein, we jointly invert long-period magnetotelluric (MT) data and surface-wave dispersion curves. Our approach is based on a joint inversion using a genetic algorithm for a one-dimensional (1-D) isotropic structure, which we extend to 1-D anisotropic media. We apply our new anisotropic joint inversion to datasets from Central Germany demonstrating the capacity of our joint inversion algorithm to establish a 1-D anisotropic model that fits MT and seismic datasets simultaneously and providing new information regarding the deep structure in Central Germany. The lithosphere/asthenosphere boundary is found at approx. 84 km depth and two main anisotropic layers with coincident most conductive/seismic fast-axis direction are resolved at lower crustal and asthenospheric depths. We also quantify the amount of seismic and electrical anisotropy in the asthenosphere showing an emerging agreement between the two anisotropic coefficients. Y1 - 2011 U6 - https://doi.org/10.1029/2010GL046358 SN - 0094-8276 VL - 38 IS - 3 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Boix, Carme A1 - Frijia, Gianluca A1 - Vicedo, Vicent A1 - Bernaus, Josep M. A1 - Di Lucia, Matteo A1 - Parente, Mariano A1 - Caus, Esmeralda T1 - Larger foraminifera distribution and strontium isotope stratigraphy of the La Cova limestones (Coniacian-Santonian, "Serra del Montsec", Pyrenees, NE Spain) JF - Cretaceous research N2 - The Upper Cretaceous La Cova limestones (southern Pyrenees, Spain) host a rich and diverse larger foraminiferal fauna, which represents the first diversification of K-strategists after the mass extinction at the Cenomanian-Turonian boundary. The stratigraphic distribution of the main taxa of larger foraminifera defines two assemblages. The first assemblage is characterised by the first appearance of lacazinids (Pseudolacazina loeblichi) and mean-dropsinids (Eofallotia simplex), by the large agglutinated Montsechiana montsechiensis, and by several species of complex rotalids (Rotorbinella campaniola, Iberorotalia reicheli, Orbitokhatina wondersmitti and Calcarinella schaubi). The second assemblage is defined by the appearance of Lacazina pyrenaica, Palandrosina taxyae and Martiguesia cyclamminiformis. A late Coniacian-early Santonian age was so far accepted for the La Cova limestones, based on indirect correlation with deep-water fades bearing planktic foraminifers of the Dicarinella concavata zone. Strontium isotope stratigraphy, based on many samples of pristine biotic calcite of rudists and ostreids, indicates that the La Cova limestones span from the early Coniacian to the early-middle Santonian boundary. The first assemblage of larger foraminifera appears very close to the early-middle Coniacian boundary and reaches its full diversity by the middle Coniacian. The originations defining the second assemblage are dated as earliest Santonian: they represent important bioevents to define the Coniacian-Santonian boundary in the shallow-water facies of the South Pyrenean province. By means of the calibration of strontium isotope stratigraphy to the Geological Time Scale, the larger foraminiferal assemblages of the La Cova limestones can be correlated to the standard biozonal scheme of ammonites, planktonic foraminifers and calcareous nannoplankton. This correlation is a first step toward a larger foraminifera standard biozonation for Upper Cretaceous carbonate platform facies. KW - Larger Foraminifera KW - Biostratigraphy KW - Strontium isotope stratigraphy KW - Coniacian-Santonian boundary KW - Shallow-water carbonates KW - Pyrenees KW - Spain Y1 - 2011 U6 - https://doi.org/10.1016/j.cretres.2011.05.009 SN - 0195-6671 VL - 32 IS - 6 SP - 806 EP - 822 PB - Elsevier CY - London ER - TY - THES A1 - Wang, Yongbo T1 - Late glacial to Holocene climate and vegetation changes on the Tibetan Plateau inferred from fossil pollen records in lacustrine sediments T1 - Pollenanalytische Ableitung der spätglazialen und holozänen Klima- und Vegetationsveränderungen auf dem tibetischen Hochland anhand von Seesedimenten N2 - The past climate in central Asia, and especially on the Tibetan Plateau (TP), is of great importance for an understanding of global climate processes and for predicting the future climate. As a major influence on the climate in this region, the Asian Summer Monsoon (ASM) and its evolutionary history are of vital importance for accurate predictions. However, neither the evolutionary pattern of the summer monsoon nor the driving mechanisms behind it are yet clearly understood. For this research, I first synthesized previously published Late Glacial to Holocene climatic records from monsoonal central Asia in order to extract the general climate signals and the associated summer monsoon intensities. New climate and vegetation sequences were then established using improved quantitative methods, focusing on fossil pollen records recovered from Tibetan lakes and also incorporating new modern datasets. The pollen-vegetation and vegetation-climate relationships on the TP were also evaluated in order to achieve a better understanding of fossil pollen records. The synthesis of previously published moisture-related palaeoclimate records in monsoonal central Asia revealed generally different temporal patterns for the two monsoonal subsystems, i.e. the Indian Summer Monsoon (ISM) and East Asian Summer Monsoon (EASM). The ISM appears to have experienced maximum wet conditions during the early Holocene, while many records from the area affected by the EASM indicate relatively dry conditions at that time, particularly in north-central China where the maximum moisture levels occurred during the middle Holocene. A detailed consideration of possible driving factors affecting the summer monsoon, including summer solar insolation and sea surface temperatures, revealed that the ISM was primarily driven by variations in northern hemisphere solar insolation, and that the EASM may have been constrained by the ISM resulting in asynchronous patterns of evolution for these two subsystems. This hypothesis is further supported by modern monsoon indices estimated using the NCEP/NCAR Reanalysis data from the last 50 years, which indicate a significant negative correlation between the two summer monsoon subsystems. By analogy with the early Holocene, intensification of the ISM during coming decades could lead to increased aridification elsewhere as a result of the asynchronous nature of the monsoon subsystems, as can already be observed in the meteorological data from the last 15 years. A quantitative climate reconstruction using fossil pollen records was achieved through analysis of sediment core recovered from Lake Donggi Cona (in the north-eastern part of the TP) which has been dated back to the Last Glacial Maximum (LGM). A new data-set of modern pollen collected from large lakes in arid to semi-arid regions of central Asia is also presented herein. The concept of "pollen source area" was introduced to modern climate calibration based on pollen from large lakes, and was applied to the fossil pollen sequence from Lake Donggi Cona. Extremely dry conditions were found to have dominated the LGM, and a subsequent gradually increasing trend in moisture during the Late Glacial period was terminated by an abrupt reversion to a dry phase that lasted for about 1000 years and coincided with the first Heinrich Event of the northern Atlantic region. Subsequent periods corresponding to the warm Bølling-Allerød period and the Younger Dryas cold event were followed by moist conditions during the early Holocene, with annual precipitation of up to about 400 mm. A slightly drier trend after 9 cal ka BP was then followed by a second wet phase during the middle Holocene that lasted until 4.5 cal ka BP. Relatively steady conditions with only slight fluctuations then dominated the late Holocene, resulting in the present climatic conditions. In order to investigate the relationship between vegetation and climate, temporal variations in the possible driving factors for vegetation change on the northern TP were examined using a high resolution late Holocene pollen record from Lake Kusai. Moving-window Redundancy Analyses (RDAs) were used to evaluate the correlations between pollen assemblages and individual sedimentary proxies. These analyses have revealed frequent fluctuations in the relative abundances of alpine steppe and alpine desert components, and in particular a decrease in the total vegetation cover at around 1500 cal a BP. The climate was found to have had an important influence on vegetation changes when conditions were relatively wet and stable. However, after the 1500 cal a BP threshold in vegetation cover was crossed the vegetation appears to have been affected more by extreme events such as dust storms or fluvial erosion than by the general climatic trends. In addition, pollen spectra over the last 600 years have been revealed by Procrustes analysis to be significantly different from those recovered from older samples, which is attributed to an increased human impact that resulted in unprecedented changes to the composition of the vegetation. Theoretical models that have been developed and widely applied to the European area (i.e. the Extended R-Value (ERV) model and the Regional Estimates of Vegetation Abundance from Large Sites (REVEALS) model) have been applied to the high alpine TP ecosystems in order to investigate the pollen-vegetation relationships, as well as for quantitative reconstructions of vegetation abundance. The modern pollen–vegetation relationships for four common pollen species on the TP have been investigated using Poaceae as the reference taxa. The ERV Submodel 2 yielded relatively high PPEs for the steppe and desert taxa (Artemisia Chenopodiaceae), and low PPEs for the Cyperaceae that are characteristic of the alpine Kobresia meadows. The plant abundances on the central and north-eastern TP were quantified by applying these PPEs to four post-Late Glacial fossil pollen sequences. The reconstructed vegetation assemblages for the four pollen sequences always yielded smaller compositional species turnovers than suggested by the pollen spectra, indicating that the strength of the previously-reported vegetation changes may therefore have been overestimated. In summary, the key findings of this thesis are that (a) the two ASM subsystems show asynchronous patterns during both the Holocene and modern time periods, (b) fossil pollen records from large lakes reflect regional signals for which the pollen source areas need to be taken into account, (c) climate is not always the main driver for vegetation change, and (d) previously reported vegetation changes on the TP may have been overestimated because they ignored inter-species variations in pollen productivity. N2 - Das Paläoklima in Zentralasien, besonders in der Hochebene von Tibet (HT), ist von großer Bedeutung um globale Klimaprozesse zu verstehen und mögliche Voraussagung für die zukunft zu treffen. Als wichtigstes Klimaphänomen nehmen der asiatische Sommermonsun (ASM) und seine Entwicklungsgeschichte eine Schlüsselposition ein. Dennoch sind derzeit weder das Entwicklungsschema noch der antreibende Vorgang ausreichend verstanden. Dies gilt insbesondere für das Holozän, für welches große Kimaschwankungen und regionale Diskrepanzen weithin belegt sind. Deshalb habe ich zuerst holozäne Klimadaten zusammengefasst. Bereits veröffentlichte Publikationen aus den Monsungebieten Zentralasiens dienten als Grundlage, um die wichtigsten Klimasignale und die zugehörigen Intensitäten des Sommermonsuns heraus zu arbeiten. Anhand von Pollensequenzen aus tibetischen Seen erzeugte ich neue Klima- und Vegetationssequenzen, welche auf verbesserten quantitativen Methoden und rezenten Datensätzen beruhen. Außerdem wurden die Verhältnisse Pollen-Vegetation und Vegetation-Klima bewertet, um Schlussfolgerungen fossiler Pollensequenzen zu verbessern. Die Zusammenfassung der zuvor veröffentlichten, niederschlagsbezogenen Paläoklimadaten im Monsungebiet Zentralasiens ergab generell unterschiedliche Muster für die zwei Teilsysteme des ASMs, den Indischen Sommermonsun (ISM) und den Ostasiatischen Sommermonsun (OASM). Der ISM weist maximale feuchte Bedingungen während des frühen Holozöns auf, während viele Datensätze aus dem Gebiet des OASMs einen relativ trockenen Zustand anzeigen, besonders im nördlichen Zentralchina, wo maximale Niederschläge während des mittleren Holozäns registriert wurden. Genaue Betrachtungen der Antriebsfaktoren des Sommermonsuns ergaben, dass der ISM hauptsächlich durch Veränderungen der Sonneneinstrahlung auf der Nordhemisphäre angetrieben wird, während der OASM potentiell durch den ISM beherrscht wird - dies führt zu asynchronen Entwicklungen. Diese Hypothese wird durch rezente Monsunindizes gestützt. Sie weisen eine signifikant negative Korrelation zwischen den beiden Sommermonsun-Teilsystemen auf. Für die quantitative Klimarekonstruktion von Pollensequenzen wurde ein Sedimentkern aus dem See Donggi Cona im Nordosten der HT analysiert, der bis zum letzten glazialen Maximum (LGM) zurückdatiert wurde. Aufgrund der Tatsache, dass Donggi Cona ein relativ großer See ist, wird hiermit ein neuer Pollen-Klima-Kalibrierungsdatensatz auf Grundlage großer Seen in ariden und semiariden Regionen Zentralasiens vorgelegt. Das Konzept des Pollenherkunftsgebietes wurde in diese rezente, pollenbasierte Klimakalibrierung eingebracht und auf die Pollensequenz von Donggi Cona angewendet. Die Auswertung ergab, dass extrem trockene Bedingungen während des LGM (ca. 100 mm/yr) vorherrschten. Ein ansteigender Trend von Niederschlägen während des späten Glazials wurde durch einen abrupten Rückgang zu einer etwa 1000-jährigen Trockenphase beendet, welche mit Heinrich-Ereignis 1 in der Nordatlantik-Region übereinstimmt. Danach entsprechen die Klimaperioden dem warmen Bølling/Allerød und dem Kälteereignis der Jüngeren Dryas. Anschließend herrschten feuchte Bedingungen im frühen Holozän (bis zu 400 mm/yr). Ein etwas trockenerer Trend nach dem Holozänen Klimaoptimum wurde dann von einer zweiten Feuchtphase abgelöst, welche bis 4,5 cal. ka vor heute andauerte. Relativ gleichmäßige Bedingungen dominierten das späte Holozän bis heute. Die Klimadynamik seit dem LGM wurde vor allem durch Entgletscherung und Intensitätsschwankungen des ASM bestimmt. Bei der Betrachtung des Vegetation-Klima-Verhältnisses habe ich die zeitlichen Variationen der bestimmenden Faktoren hinsichtlich der Vegetationsdynamik auf der nördlichen HT untersucht. Dabei wurden hochauflösende holozäne Pollendaten des Kusai-Sees verwendet. Eine Redundanzanalyse (RDA) wurde angewendet um die Korrelation zwischen Pollenvergesellschaftungen und individuellen sedimentären Klimaanzeigern als auch die damit verbundene Signifikanz zu bewerten. Es stellte sich heraus, dass das Klima einen wichtigen Einfluss auf den Veränderungen in der Vegetation besaß, wenn die Bedingungen relativ warm und feucht waren. Trotzdem scheint es, dass, dass die Vegetation bei zu geringer Bedeckung stärker durch Extremereignisse wie Staubstürme oder fluviale Erosion beeinflusst wurde. Pollenspektren der vergangen 600 Jahre erwiesen sich als signifikant unterschiedlich verglichen mit den älterer Proben, was auf verstärkten anthropogenen Einfluss hindeutet. Dieser resultierte in einem beispiellosen Wandel in der Zusammensetzung der Vegetation. In Hinsicht auf das Pollen-Vegetation-Verhältnis und der quantitativen Rekonstruktion der Vegetationshäufigkeit habe ich theoretische Modelle, welche für europäische Regionen entwickelt und weithin angewendet wurden, respektive die Modelle "Extended R-Value" (ERV) sowie "Regional Estimates of Vegetation Abundance from Large Sites" (REVEALS), auf die hochalpinen Ökosysteme der HT überführt. Dafür wurden rezente Pollen-Vegetations-Verhältnisse von vier weit verbreiteten Pollen-Arten der HT überprüft. Poaceae wurden als Referenztaxa verwendet. Bei der Anwendung dieser Verhältnisse auf vier Pollensequenzen, welche die Paläoumweltbedingungen seit dem letzten Glazial widerspiegeln, wurden die Häufigkeiten von Pflanzen auf der zentralen und nordöstlichen HT quantifiziert. Anteile von Artimisia und Chenopodiaceae waren dabei im Vergleich zu ihren ursprünglichen Pollenprozenten deutlich verringert. Cyperaceae hingegen wies eine relative Zunahme in dieser Vegetationsrekonstruktion auf. Die rekonstruierten Vegetationsvergesellschaftungen an den Standorten der vier Pollensequenzen ergaben stets geringere Umwälzungen in der Artenzusammensetzung, als durch die Pollenspektren zu vermuten gewesen wäre. Dies kann ein Hinweis darauf sein, dass die Intensität der bislang angenommenen Vegetationsveränderungen überschätzt worden ist. Zusammengefasst sind die Hauptresultate dieser Dissertation, dass (a) die zwei ASM Teilsysteme asynchrone Muster während des Holozäns und heute aufweisen, dass (b) fossile Pollensequenzen großer Seen regionale Klimasignale widerspiegeln sofern die Herkunftsgebiete der Pollen berücksichtigt werden, dass (c) Klima nicht immer der Haupteinflussfaktor für Vegetationswandel ist und dass (d) das Ausmaß von Vegetationsveränderungen in zuvor veröffentlichten Studien auf der Hochebene von Tibet überschätzt worden sein kann, weil Diskrepanzen der Pollenproduktivität zwischen den Arten nicht einbezogen wurden. KW - Asiatischer Sommermonsun KW - ASM KW - Holozän KW - Seesedimente KW - Pollen KW - Hochland von Tibet KW - Asian Summer Monsoon KW - Holocene KW - Lake sediments KW - Pollen KW - Tibetan Plateau Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-63155 ER - TY - JOUR A1 - Toke, Nathan A. A1 - Arrowsmith, J. Ramon A1 - Rymer, Michael J. A1 - Landgraf, Angela A1 - Haddad, David E. A1 - Busch, Melanie A1 - Coyan, Joshua A1 - Hannah, Alexander T1 - Late Holocene slip rate of the San Andreas fault and its accommodation by creep and moderate-magnitude earthquakes at Parkfield, California JF - Geology N2 - Investigation of a right-laterally offset channel at the Miller's Field paleoseismic site yields a late Holocene slip rate of 26.2 +6.4/-4.3 mm/yr (1 sigma) for the main trace of the San Andreas fault at Parkfield, California. This is the first well-documented geologic slip rate between the Carrizo and creeping sections of the San Andreas fault. This rate is lower than Holocene measurements along the Carrizo Plain and rates implied by far-field geodetic measurements (similar to 35 mm/yr). However, the rate is consistent with historical slip rates, measured to the northwest, along the creeping section of the San Andreas fault (<30 mm/yr). The paleoseismic exposures at the Miller's Field site reveal a pervasive fabric of clay shear bands, oriented clockwise oblique to the San Andreas fault strike and extending into the uppermost stratigraphy. This fabric is consistent with dextral aseismic creep and observations of surface slip from the 28 September 2004 M6 Parkfield earthquake. Together, this slip rate and deformation fabric suggest that the historically observed San Andreas fault slip behavior along the Parkfield section has persisted for at least a millennium, and that significant slip is accommodated by structures in a zone beyond the main San Andreas fault trace. Y1 - 2011 U6 - https://doi.org/10.1130/G31498.1 SN - 0091-7613 VL - 39 IS - 3 SP - 243 EP - 246 PB - American Institute of Physics CY - Boulder ER - TY - JOUR A1 - Yildirim, Cengiz A1 - Schildgen, Taylor F. A1 - Echtler, Helmut Peter A1 - Melnick, Daniel A1 - Strecker, Manfred T1 - Late Neogene and active orogenic uplift in the Central Pontides associated with the North Anatolian Fault implications for the northern margin of the Central Anatolian Plateau, Turkey JF - Tectonics N2 - Surface uplift at the northern margin of the Central Anatolian Plateau (CAP) is integrally tied to the evolution of the Central Pontides (CP), between the North Anatolian Fault (NAF) and the Black Sea. Our regional morphometric and plate kinematic analyses reveal topographic anomalies, steep channel gradients, and local high relief areas as indicators of ongoing differential surface uplift, which is higher in the western CP compared to the eastern CP and fault-normal components of geodetic slip vectors and the character of tectonic activity of the NAF suggest that stress is accumulated in its broad restraining bend. Seismic reflection and structural field data show evidence for a deep structural detachment horizon responsible for the formation of an actively northward growing orogenic wedge with a positive flower-structure geometry across the CP and the NAF. Taken together, the tectonic, plate kinematic, and geomorphic observations imply that the NAF is the main driving mechanism for wedge tectonics and uplift in the CP. In addition, the NAF Zone defines the boundary between the extensional CAP and the contractional CP. The syntectonic deposits within inverted intermontane basins and deeply incised gorges suggest that the formation of relief, changes in sedimentary dynamics, and > 1 km fluvial incision resulted from accelerated uplift starting in the early Pliocene. The Central Pontides thus provide an example of an accretionary wedge with surface-breaking faults that play a critical role in mountain building processes, sedimentary basin development, and ensuing lateral growth of a continental plateau since the end of the Miocene. Y1 - 2011 U6 - https://doi.org/10.1029/2010TC002756 SN - 0278-7407 VL - 30 PB - American Geophysical Union CY - Washington ER - TY - THES A1 - Fritz, Michael T1 - Late quaternary environmental dynamics of the western canadian artic : permafrost and lake sediment archives at the easter beringian edge Y1 - 2011 CY - Potsdam ER - TY - THES A1 - Lauterbach, Stefan T1 - Lateglacial to Holocene climatic and environmental changes in Europe : multi-proxy studies on lake sediments along a transect from northern Italy to northeastern Poland T1 - Spätglaziale und holozäne Klima- und Umweltveränderungen in Europa : Multiproxy-Untersuchungen an Seesedimenten entlang eines Transekts zwischen Norditalien und Nordostpolen N2 - Sediment records of three European lakes were investigated in order to reconstruct the regional climate development during the Lateglacial and Holocene, to investigate the response of local ecosystems to climatic fluctuations and human impact and to relate regional peculiarities of past climate development to climatic changes on a larger spatial scale. The Lake Hańcza (NE Poland) sediment record was studied with a focus on reconstructing the early Holocene climate development and identifying possible differences to Western Europe. Following the initial Holocene climatic improvement, a further climatic improvement occurred between 10 000 and 9000 cal. a BP. Apparently, relatively cold and dry climate conditions persisted in NE Poland during the first ca. 1500 years of the Holocene, most likely due to a specific regional atmospheric circulation pattern. Prevailing anticyclonic circulation linked to a high-pressure cell above the remaining Scandinavian Ice Sheet (SIS) might have blocked the eastward propagation of warm and moist Westerlies and thus attenuated the early Holocene climatic amelioration in this region until the final decay of the SIS, a pattern different from climate development in Western Europe. The Lateglacial sediment record of Lake Mondsee (Upper Austria) was investigated in order to study the regional climate development and the environmental response to rapid climatic fluctuations. While the temperature rise and environmental response at the onset of the Holocene took place quasi-synchronously, major leads and lags in proxy responses characterize the onset of the Lateglacial Interstadial. In particular, the spread of coniferous woodlands and the reduction of detrital flux lagged the initial Lateglacial warming by ca. 500–750 years. Major cooling at the onset of the Younger Dryas took place synchronously with a change in vegetation, while the increase of detrital matter flux was delayed by about 150–300 years. Complex proxy responses are also detected for short-term Lateglacial climatic fluctuations. In summary, periods of abrupt climatic changes are characterized by complex and temporally variable proxy responses, mainly controlled by ecosystem inertia and the environmental preconditions. A second study on the Lake Mondsee sediment record focused on two small-scale climate deteriorations around 8200 and 9100 cal. a BP, which have been triggered by freshwater discharges to the North Atlantic, causing a shutdown of the Atlantic meridional overturning circulation (MOC). Combining microscopic varve counting and AMS 14C dating yielded a precise duration estimate (ca. 150 years) and absolute dating of the 8.2 ka cold event, both being in good agreement with results from other palaeoclimate records. Moreover, a sudden temperature overshoot after the 8.2 ka cold event was identified, also seen in other proxy records around the North Atlantic. This was most likely caused by enhanced resumption of the MOC, which also initiated substantial shifts of oceanic and atmospheric front systems. Although there is also evidence from other proxy records for pronounced recovery of the MOC and atmospheric circulation changes after the 9.1 ka cold event, no temperature overshoot is seen in the Lake Mondsee record, indicating the complex behaviour of the global climate system. The Holocene sediment record of Lake Iseo (northern Italy) was studied to shed light on regional earthquake activity and the influence of climate variability and anthropogenic impact on catchment erosion and detrital flux into the lake. Frequent small-scale detrital layers within the sediments reflect allochthonous sediment supply by extreme surface runoff events. During the early to mid-Holocene, increased detrital flux coincides with periods of cold and wet climate conditions, thus apparently being mainly controlled by climate variability. In contrast, intervals of high detrital flux during the late Holocene partly also correlate with phases of increased human impact, reflecting the complex influences on catchment erosion processes. Five large-scale event layers within the sediments, which are composed of mass-wasting deposits and turbidites, are supposed to have been triggered by strong local earthquakes. While the uppermost of these event layers is assigned to a documented adjacent earthquake in AD 1222, the four other layers are supposed to be related to previously undocumented prehistorical earthquakes. N2 - Sedimente aus drei europäischen Seen wurden untersucht um die regionale Klimaentwicklung während des Spätglazials und Holozäns und die Reaktion der Ökosysteme auf Klimaschwankungen und menschlichen Einfluss zu rekonstruieren sowie die regionalen Besonderheiten der spätquartären Klimaveränderungen in einen überregionalen Kontext zu setzen. Die Sedimente des Jezioro Hańcza (Nordostpolen) wurden im Hinblick auf die frühholozäne Klimaentwicklung und die Identifikation möglicher Unterschiede gegenüber Westeuropa untersucht. Im Anschluss an die Erwärmung zu Beginn des Holozäns konnte eine weitere Verbesserung der Klimabedingungen zwischen 10 000 und 9000 Jahren vor heute nachgewiesen werden. Offensichtlich herrschten in Nordostpolen während der ersten 1500 Jahre des Holozäns noch relative kalte und trockene Klimabedingungen, höchstwahrscheinlich als Resultat besonderer regionaler atmosphärischer Zirkulationsverhältnisse. Eine antizyklonale Zirkulationszelle als Resultat eines Hochdruckgebiets über dem Rest des Skandinavischen Eisschilds verhinderte wahrscheinlich das Vordringen warmer und feuchter Luftmassen aus Westen und verursachte damit eine Abschwächung der frühholozänen Klimaverbesserung in dieser Region bis zum endgültigen Zerfall des Eisschilds, was grundsätzlich von der frühholozänen Klimaentwicklung in Westeuropa abweicht. Die spätglazialen Sedimente des Mondsees (Oberösterreich) wurden im Hinblick auf die regionale Klimaentwicklung und die Reaktion des Ökosystems auf abrupte Klimaschwankungen untersucht. Während die Erwärmung zu Beginn des Holozäns von einer zeitgleichen Reaktion des Ökosystems begleitet wurde, war die Reaktion des Ökosystems auf die Erwärmung zu Beginn des Spätglazials deutlich verzögert. Insbesondere die Ausbreitung von Nadelwäldern und die Reduktion des klastischen Eintrags folgten der spätglazialen Erwärmung erst mit einer Verzögerung von ca. 500–750 Jahren. Die Abkühlung zu Beginn der Jüngeren Dryas war durch eine deutliche Synchronizität zwischen Temperatur- und Vegetationsänderung gekennzeichnet, wohingegen der Anstieg des klastischen Eintrags erst 150–300 Jahre verzögert folgte. Eine komplexe Reaktion des Ökosystems zeigt sich auch während kurzfristiger spätglazialer Klimaschwankungen. Zusammenfassend lässt sich sagen, dass abrupte Klimaveränderungen durch komplexe und zeitlich variable Reaktionsmuster des Ökosystems gekennzeichnet sind, die hauptsächlich von dessen Klimasensitivität und den ökologischen Ausgangsbedingungen abhängen. Eine zweite Studie an den Sedimenten des Mondsees konzentrierte sich auf zwei Klimaschwankungen vor ca. 8200 und 9100 Jahren, für die Schmelzwassereintrag in den Nordatlantik und ein damit verbundenes Zusammenbrechen der thermohalinen Zirkulation als Ursache angesehen wird. Durch Warvenzählungen und 14C-Datierungen konnten sowohl die Dauer (ca. 150 Jahre) als auch das absolute Alter der Kältephase vor ca. 8200 Jahren zuverlässig bestimmt werden, welche in guter Übereinstimmung mit Resultaten aus anderen Paläoklimaarchiven stehen. Darüber hinaus wurde eine kurze Warmphase direkt im Anschluss an das Abkühlungsereignis identifiziert, die auch in anderen Klimaarchiven im nordatlantischen Raum nachweisbar ist. Diese wurde wahrscheinlich durch ein Wiedererstarken der thermohalinen Zirkulation verursacht, welches darüber hinaus eine Verschiebung ozeanischer und atmosphärischer Frontsysteme zur Folge hatte. Obwohl andere Klimaarchive auch nach dem Abkühlungsereignis vor ca. 9100 Jahren auf ein Wiedererstarken der thermohalinen Zirkulation hindeuten, finden sich in den Sedimenten des Mondsees keine Anzeichen für eine solche Wärmeperiode, was die Komplexität des globalen Klimasystems verdeutlicht. Die holozänen Sedimente des Lago d’Iseo (Norditalien) wurden im Hinblick auf die regionale Erdbebenaktivität und den Einfluss von Klima und Mensch auf Erosionsprozesse im Einzugsgebiet und den klastischen Eintrag in den See untersucht. Zahlreiche kleinere detritische Lagen in den Sedimenten spiegeln Eintrag durch extreme Oberflächenabflussereignisse wieder. Während des Früh- und Mittelholozäns zeigt sich eine deutliche Übereinstimmung zwischen erhöhtem klastischen Eintrag und kühleren und feuchteren Klimaverhältnissen, was auf einen dominanten Einfluss der natürlichen Klimavariabilität hindeutet. Im Gegensatz dazu zeigen Phasen erhöhten klastischen Eintrags während des Spätholozäns teilweise auch eine Korrelation mit erhöhter Siedlungsaktivität, was die Komplexität der Einflüsse auf Erosionsprozesse im Einzugsgebiet verdeutlicht. Darüber hinaus konnten auch fünf größere Ereignislagen nachgewiesen werden, welche durch Rutschmassen und Turbidite gekennzeichnet sind und für die lokale Erdbeben als Ursache vermutet werden. Die jüngste Ereignislage kann mit einem historisch dokumentierten proximalen Erdbeben im Jahr AD 1222 korreliert werden. Für die anderen vier Ereignislagen werden bisher undokumentierte prähistorische Erdbeben als Ursache angenommen. KW - Spätglazial KW - Holozän KW - Seesedimente KW - Paläoklima KW - Europa KW - Lateglacial KW - Holocene KW - lake sediments KW - palaeoclimate KW - Europe Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-58157 ER - TY - JOUR A1 - Kahmen, Ansgar A1 - Dawson, Todd E. A1 - Vieth, Andrea A1 - Sachse, Dirk T1 - Leaf wax n-alkane delta D values are determined early in the ontogeny of Populus trichocarpa leaves when grown under controlled environmental conditions JF - Plant, cell & environment : cell physiology, whole-plant physiology, community physiology N2 - The stable hydrogen isotope ratios (delta D) of leaf wax n-alkanes record valuable information on plant and ecosystem water relations. It remains, however, unknown if leaf wax n-alkane delta D values record only environmental variation during the brief period of time of leaf growth or if leaf wax n-alkane delta D values are affected by environmental variability throughout the entire lifespan of a leaf. To resolve these uncertainties, we irrigated Populus trichocarpa trees with a pulse of deuterium-enriched water and used compound-specific stable hydrogen isotope analyses to test if the applied tracer could be recovered from leaf wax n-alkanes of leaves that were at different stages of their development during the tracer application. Our experiment revealed that only leaf wax n-alkanes from leaves that had developed during the time of the tracer application were affected, while leaves that were already fully matured at the time of the tracer application were not. We conclude from our study that under controlled environmental conditions, leaf wax n-alkanes are synthesized only early in the ontogeny of a leaf. Our experiment has implications for the interpretation of leaf wax n-alkane delta D values in an environmental context, as it suggests that these compounds record only a brief period of the environmental variability that a leaf experiences throughout its life. KW - cuticle KW - plant water relations KW - stable isotopes Y1 - 2011 U6 - https://doi.org/10.1111/j.1365-3040.2011.02360.x SN - 0140-7791 VL - 34 IS - 10 SP - 1639 EP - 1651 PB - Wiley-Blackwell CY - Hoboken ER - TY - THES A1 - Meneses Rioseco, Ernesto T1 - Lithopheric rheology at the Dead Sea Transform Fault constrained by thermo-mechanical modeling Y1 - 2011 CY - Potsdam ER - TY - JOUR A1 - Scherbaum, Frank A1 - Kühn, Nicolas M. T1 - Logic tree branch weights and probabilities summing up to one is not enough JF - Earthquake spectra : the professional journal of the Earthquake Engineering Research Institute N2 - Logic trees have become the most popular tool for the quantification of epistemic uncertainties in probabilistic seismic hazard assessment (PSHA). In a logic-tree framework, epistemic uncertainty is expressed in a set of branch weights, by which an expert or an expert group assigns degree-of-belief values to the applicability of the corresponding branch models. Despite the popularity of logic-trees, however, one finds surprisingly few clear commitments to what logic-tree branch weights are assumed to be (even by hazard analysts designing logic trees). In the present paper we argue that it is important for hazard analysts to accept the probabilistic framework from the beginning for assigning logic-tree branch weights. In other words, to accept that logic-tree branch weights are probabilities in the axiomatic sense, independent of one's preference for the philosophical interpretation of probabilities. We demonstrate that interpreting logic-tree branch weights merely as a numerical measure of "model quality," which are then subsequently normalized to sum up to unity, will with increasing number of models inevitably lead to an apparent insensitivity of hazard curves on the logic-tree branch weights, which may even be mistaken for robustness of the results. Finally, we argue that assigning logic-tree branch weights in a sequential fashion may improve their logical consistency. Y1 - 2011 U6 - https://doi.org/10.1193/1.3652744 SN - 8755-2930 VL - 27 IS - 4 SP - 1237 EP - 1251 PB - Earthquake Engineering Research Institute CY - Oakland ER - TY - JOUR A1 - Endrun, Brigitte T1 - Love wave contribution to the ambient vibration H/V amplitude peak observed with array measurements JF - Journal of seismology N2 - This study applies array methods to measure the relative proportions of Love and Rayleigh waves in the ambient vibration wavefield. Information on these properties is of special relevance for frequencies around the horizontal-to-vertical (H/V) spectral amplitude ratio peak. The analysis of H/V curves, a popular technique in site characterisation, commonly assumes that the curves represent the frequency-dependent Rayleigh wave ellipticity. For the detailed interpretation of amplitudes or the inversion of the curves, it is therefore necessary to estimate and correct for the contribution of other wave types to the ambient vibration wavefield. I use available ambient vibration array measurements to determine the relative amount of Love and Rayleigh waves on the horizontal components by frequency-dependent analysis of the main propagation and polarisation directions, with a special emphasis on the H/V peak frequency as determined from the same recordings. Tests with synthetic data demonstrate the feasibility of this approach, at least in the presence of dominant source regions. Analysis of the data from 12 measurements at nine European sites, which include shallow as well as deep locations that span a wide range of impedance contrasts at the sediment-bedrock interface, indicates that the relative contribution of Rayleigh waves varies widely with frequency, from close to 0% to more than 70%. While most data sets show relative Rayleigh wave contributions between 40% and 50% around the H/V peak, there are also examples where Love waves clearly dominate the wavefield at the H/V peak, even for a site with a low impedance contrast. Longer-term measurements at one site indicate temporal variations in the relative Rayleigh wave content between day- and nighttime. Results calculated with the method introduced herein generally compare well with results of modified spatial autocorrelation analysis. These two methods might be used in a complimentary fashion, as both rely on different properties of the ambient vibration wavefield. This study illustrates that it is possible to measure the relative Rayleigh wave content of the noise wavefield from array data. Furthermore, the examples presented herein indicate it is important to estimate this property, as the assumption that there are an equal proportion of Love and Rayleigh waves is not always correct. KW - Ambient vibrations KW - Surface waves KW - Array seismology KW - Polarisation analysis KW - H/V spectral ratio KW - Site characterisation Y1 - 2011 U6 - https://doi.org/10.1007/s10950-010-9191-x SN - 1383-4649 VL - 15 IS - 3 SP - 443 EP - 472 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Mitreiter, Ivonne A1 - Oswald, Sascha A1 - Stallmach, Frank T1 - Magnetic resonance measurements of iron turn-over in sands T1 - Magnetresonanz-Messung von Eisenumsatzprozessen in Sanden BT - Nicht-invasive Charakterisierung von Reaktionsabläufen BT - non-invasive characterization of reaction processes JF - Grundwasser : Zeitschrift der Fachsektion Hydrogeologie in der Deutschen Gesellschaft für Geowissenschaften (FH-DGG) N2 - In this study, Nuclear Magnetic Resonance (NMR), a non-destructive measurement technique, has been applied for investigation of iron turn-over processes. In non-invasive laboratory experiments, iron dissolution and precipitation reactions in saturated natural sands were observed spatially and temporally. These processes play an important role in groundwater with varying redox and pH conditions. Redox reactions turning Fe2+ into Fe3+ and Fe3+ into Fe2+ were detected in aqueous solution by the difference in magnetic relaxation times. Furthermore, the spatial distribution of the iron reduction reaction, the consumption and diffusive transfer to and from the reaction sites, was observed in a 1D set-up with natural sands. The achieved spatial resolution was less than one millimetre while repeating measurements every half an hour. It showed the system changing from diffusion-limited to reaction-limited. KW - Nuclear magnetic resonance KW - Ferric iron KW - Ferrous iron KW - Acidification KW - Redox reaction KW - Reactive transport modelling Y1 - 2011 U6 - https://doi.org/10.1007/s00767-011-0177-6 SN - 1430-483X VL - 16 IS - 4 SP - 269 EP - 278 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Haney, Frank A1 - Kummerow, J. A1 - Langenbruch, C. A1 - Dinske, C. A1 - Shapiro, Serge A. A1 - Scherbaum, Frank T1 - Magnitude estimation for microseismicity induced during the KTB 2004/2005 injection experiment JF - Geophysics N2 - We determined the magnitudes of 2540 microseismic events measured at one single 3C borehole geophone at the German Deep Drilling Site (known by the German acronym, KTB) during the injection phase 2004/2005. For this task we developed a three-step approach. First, we estimated local magnitudes of 104 larger events with a standard method based on amplitude measurements at near-surface stations. Second, we investigated a series of parameters to characterize the size of these events using the seismograms of the borehole sensor, and we compared them statistically with the local magnitudes. Third, we extrapolated the regression curve to obtain the magnitudes of 2436 events that were only measured at the borehole geophone. This method improved the magnitude of completeness for the KTB data set by more than one order down to M = -2.75. The resulting b-value for all events was 0.78, which is similar to the b-value obtained from taking only the greater events with standard local magnitude estimation from near-surface stations, b = 0.86. The more complete magnitude catalog was required to study the magnitude distribution with time and to characterize the seismotectonic state of the KTB injection site. The event distribution with time was consistent with prediction from theory assuming pore pressure diffusion as the underlying mechanism to trigger the events. The value we obtained for the seismogenic index of -4 suggested that the seismic hazard potential at the KTB site is comparatively low. Y1 - 2011 U6 - https://doi.org/10.1190/GEO2011-0020.1 SN - 0016-8033 VL - 76 IS - 6 SP - WC47 EP - WC53 PB - Society of Exploration Geophysicists CY - Tulsa ER - TY - JOUR A1 - Berger, Alfons A1 - Schmid, Stefan M. A1 - Engi, Martin A1 - Bousquet, Romain A1 - Wiederkehr, Michael T1 - Mechanisms of mass and heat transport during Barrovian metamorphism: A discussion based on field evidence from the Central Alps (Switzerland/northern Italy) JF - Tectonics N2 - Tectonic and metamorphic data for the Central Alps (Switzerland/Italy) are used to discuss this classic example of a Barrovian metamorphic terrain, notably the evolution of its thermal structure in space and time. Available P-T-t data indicate variable contributions of advective and conductive heat transport during collision and subsequent cooling and exhumation. Some areas experienced a prolonged period of partial melting while other areas, at the same time, show but moderate heating. The Barrow-type metamorphic field gradient observed in the final orogen is the result of two distinct tectonic processes, with their related advective and conductive heat transport processes. The two tectonic processes are (1) accretion of material within a subduction channel related to decompression and emplacement of high-pressure units in the middle crust and (2) wedging and related nappe formation in the continental lower plate. The second process postdates the first one. Wedging and underthrusting of continental lower plate material produces heat input into lower crustal levels, and this process is responsible for predominantly conductive heat transport in the overlying units. The interacting processes lead to different maximum temperatures at different times, producing the final Barrovian metamorphic field gradient. The south experienced rapid cooling, whereas the north shows moderate cooling rates. This discrepancy principally reflects differences in the temperature distribution in the deeper crust prior to cooling. Differences in the local thermal gradient that prevailed before the cooling also determined the relationships between cooling rate and exhumation rate in the different areas. Citation: Berger, A., S. M. Schmid, M. Engi, R. Bousquet, and M. Wiederkehr (2011), Mechanisms of mass and heat transport during Barrovian metamorphism: A discussion based on field evidence from the Central Alps (Switzerland/northern Italy), Tectonics, 30, TC1007, doi:10.1029/2009TC002622. Y1 - 2011 U6 - https://doi.org/10.1029/2009TC002622 SN - 0278-7407 VL - 30 IS - 2 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Steinhoefel, Grit A1 - Breuer, Jörn A1 - von Blanckenburg, Friedhelm A1 - Horn, Ingo A1 - Kaczorek, Danuta A1 - Sommer, Michael T1 - Micrometer silicon isotope diagnostics of soils by UV femtosecond laser ablation JF - Chemical geology : official journal of the European Association for Geochemistry N2 - This study presents the first Si isotope data of the principle Si pools in soils determined by a UV femtosecond laser ablation system coupled to a multicollector inductively coupled plasma mass spectrometer (MC-ICP-MS). This method reveals accurate and precise Si isotope data on bulk materials, and at high spatial resolution, on the mineral scale. The following Si pools have been investigated: a) the Si source to soils on all major silicate minerals on thin sections from bedrock fragments in the soil profiles; b) bulk soils (particle size <2 mm) after fusion to glass beads with an iridium-strip heater or pressed into powder pellets: c) separated clay fractions as pressed powder pellets and e) separated phytoliths as pressed powder pellets. Multiple analyses of three rock standards, BHVO-2, AGV-1 and RGM-1 as fused glass beads and as pressed powder pellets, reveal delta(30)Si values within the expected range of igneous rocks. The MPI-DING reference glass KL2-G exhibits the same Si isotope composition after remelting by an iridium-strip heater showing that this technique does not alter the isotope composition of the glass. We used this approach to investigated two immature Cambisols developed on sandstone and paragneiss in the Black Forest (Germany), respectively. Bulk soils show a largely uniform Si isotope signature for different horizons and locations, which is close to those of primary quartz and feldspar with delta(30)Si values around -0.4 parts per thousand. Soil clay formation is associated with limited Si mobility, which preserves initial Si isotope signatures of parental minerals. An exception is the organic horizon of the paragneiss catchment where intense weathering leads to a high mobility of Si and significant negative isotope signatures as low as to -1.00 parts per thousand in bulk soils. Biogenic opal in the form of phytoliths, exhibits negative Si isotope signatures of about -0.4 parts per thousand. These results demonstrate that UV femtosecond laser ablation MC-ICP-MS provides a tool to characterize the Si isotope signature of the principle Si pools left behind after weathering and Si transport have altered soils. These results can now serve as a fingerprint of the residual solids that can be used to explain the isotope composition of dissolved Si in soil solutions and river water, which is mostly enriched in the heavy isotopes. KW - Silicon isotopes KW - Soils KW - UV femtosecond laser ablation KW - MC-ICP-MS Y1 - 2011 U6 - https://doi.org/10.1016/j.chemgeo.2011.05.013 SN - 0009-2541 VL - 286 IS - 3-4 SP - 280 EP - 289 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Kühn, Nicolas M. A1 - Riggelsen, Carsten A1 - Scherbaum, Frank T1 - Modeling the joint probability of earthquake, site, and ground-motion parameters using bayesian networks JF - Bulletin of the Seismological Society of America N2 - Bayesian networks are a powerful and increasingly popular tool for reasoning under uncertainty, offering intuitive insight into (probabilistic) data-generating processes. They have been successfully applied to many different fields, including bioinformatics. In this paper, Bayesian networks are used to model the joint-probability distribution of selected earthquake, site, and ground-motion parameters. This provides a probabilistic representation of the independencies and dependencies between these variables. In particular, contrary to classical regression, Bayesian networks do not distinguish between target and predictors, treating each variable as random variable. The capability of Bayesian networks to model the ground-motion domain in probabilistic seismic hazard analysis is shown for a generic situation. A Bayesian network is learned based on a subset of the Next Generation Attenuation (NGA) dataset, using 3342 records from 154 earthquakes. Because no prior assumptions about dependencies between particular parameters are made, the learned network displays the most probable model given the data. The learned network shows that the ground-motion parameter (horizontal peak ground acceleration, PGA) is directly connected only to the moment magnitude, Joyner-Boore distance, fault mechanism, source-to-site azimuth, and depth to a shear-wave horizon of 2: 5 km/s (Z2.5). In particular, the effect of V-S30 is mediated by Z2.5. Comparisons of the PGA distributions based on the Bayesian networks with the NGA model of Boore and Atkinson (2008) show a reasonable agreement in ranges of good data coverage. Y1 - 2011 U6 - https://doi.org/10.1785/0120100080 SN - 0037-1106 VL - 101 IS - 1 SP - 235 EP - 249 PB - Seismological Society of America CY - El Cerrito ER - TY - JOUR A1 - Pilz, Marco A1 - Parolai, Stefano A1 - Stupazzini, Marco A1 - Paolucci, Roberto A1 - Zschau, Jochen T1 - Modelling basin effects on earthquake ground motion in the Santiago de Chile basin by a spectral element code JF - Geophysical journal international N2 - Simulations of strong ground motion within the Santiago de Chile Metropolitan area were carried out by means of 3-D deterministic wave propagation tool based on the spectral element method. The simulated events take into account the pronounced interface between the low-velocity sedimentary basin and the bedrock as well as topography of the area. To verify our model we simulated a regional earthquake recorded by a dense network installed in the city of Santiago for recording aftershock activity after the 2010 February 27 Maule main shock. The results proof the alluvial basin amplification effects and show a strong dependence of spectral amplification in the basin on the local site conditions. Moreover, we studied the seismic response due to a hypothetical M(w) = 6.0 event occurring along the active San Ramon Fault, which is crossing the eastern edge of the city. The scenario earthquakes exhibit that an unfavourable interaction between fault rupture, radiation mechanism and complex geological and topographic conditions in the near-field region may give rise to large values of peak ground velocity in the basin. Finally, 3-D numerical predictions of ground motion are compared with the one computed according to ground motion prediction equations selected among the next generation attenuation relationships, in terms of ground motion peak values and spectral acceleration. The comparison underlines that the 3-D scenario simulations predict a significantly higher level of ground motion in the Santiago basin, especially over deep alluvial deposits. Moreover, also the location of the rupture nucleation largely influences the observed shaking pattern. KW - Earthquake ground motions KW - Site effects KW - Wave propagation KW - South America Y1 - 2011 U6 - https://doi.org/10.1111/j.1365-246X.2011.05183.x SN - 0956-540X VL - 187 IS - 2 SP - 929 EP - 945 PB - Wiley-Blackwell CY - Malden ER - TY - JOUR A1 - Wischnewski, Juliane A1 - Mackay, Anson W. A1 - Appleby, Peter G. A1 - Mischke, Steffen A1 - Herzschuh, Ulrike T1 - Modest diatom responses to regional warming on the southeast Tibetan Plateau during the last two centuries JF - Journal of paleolimnolog N2 - A general mean annual temperature increase accompanied with substantial glacial retreat has been noted on the Tibetan Plateau during the last two centuries but most significantly since the mid 1950s. These climate trends are particularly apparent on the southeastern Tibetan Plateau. However, the Tibetan Plateau (due to its heterogeneous mountain landscape) has very complex and spatially differing temperature and precipitations patterns. As a result, intensive palaeolimnological investigations are necessary to decipher these climatic patterns and to understand ecological responses to recent environmental change. Here we present palaeolimnological results from a (210)Pb/(137)Cs-dated sediment core spanning approximately the last 200 years from a remote high-mountain lake (LC6 Lake, working name) on the southeastern Tibetan Plateau. Sediment profiles of diatoms, organic variables (TOC, C:N) and grain size were investigated. The (210)Pb record suggests a period of rapid sedimentation, which might be linked to major tectonic events in the region ca. 1950. Furthermore, unusually high (210)Pb supply rates over the last 50 years suggest that the lake has possibly been subjected to increasing precipitation rates, sediment focussing and/or increased spring thaw. The majority of diatom taxa encountered in the core are typical of slightly acidic to circumneutral, oligotrophic, electrolyte-poor lakes. Diatom species assemblages were rich, and dominated by Cyclotella sp., Achnanthes sp., Aulacoseira sp. and fragilarioid taxa. Diatom compositional change was minimal over the 200-year period (DCCA = 0.85 SD, p = 0.59); only a slightly more diverse but unstable diatom assemblage was recorded during the past 50 years. The results indicate that large-scale environmental changes recorded in the twentieth century (i.e. increased precipitation and temperatures) are likely having an affect on the LC6 Lake, but so far these impacts are more apparent on the lake geochemistry than on the diatom flora. Local and/or regional peculiarities, such as increasing precipitation and cloud cover, or localized climatic phenomena, such as negative climate feedbacks, might have offset the effects of increasing mean surface temperatures. KW - Diatoms KW - Tibetan Plateau KW - Mountain lake KW - Climate change KW - Lake sediments KW - Palaeolimnology Y1 - 2011 U6 - https://doi.org/10.1007/s10933-011-9533-x SN - 0921-2728 VL - 46 IS - 2 SP - 215 EP - 227 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Loeffler, Jörg A1 - Anschlag, Kerstin A1 - Baker, Barry A1 - Finch, Oliver-D. A1 - Diekkrueger, Bernd A1 - Wundram, Dirk A1 - Schroeder, Boris A1 - Pape, Roland A1 - Lundberg, Anders T1 - Mountain ecosystem response to global change JF - Erdkunde : archive for scientific geography N2 - Mountain ecosystems are commonly regarded as being highly sensitive to global change. Due to the system complexity and multifaceted interacting drivers, however, understanding current responses and predicting future changes in these ecosystems is extremely difficult. We aim to discuss potential effects of global change on mountain ecosystems and give examples of the underlying response mechanisms as they are understood at present. Based on the development of scientific global change research in mountains and its recent structures, we identify future research needs, highlighting the major lack and the importance of integrated studies that implement multi-factor, multi-method, multi-scale, and interdisciplinary research. KW - High mountain ecology KW - arctic-alpine environments KW - climate change KW - land use and land cover change KW - tree line alteration KW - range shifts KW - altitudinal zonation Y1 - 2011 U6 - https://doi.org/10.3112/erdkunde.2011.02.06 SN - 0014-0015 VL - 65 IS - 2 SP - 189 EP - 213 PB - Geographisches Inst., Univ. Bonn CY - Goch ER - TY - JOUR A1 - Wieland, Ralf A1 - Dalchow, Claus A1 - Sommer, Michael A1 - Fukuda, Kyoko T1 - Multi-Scale Landscape Analysis (MSLA) a method to identify correlation of relief with ecological point data JF - Ecological informatics : an international journal on ecoinformatics and computational ecolog N2 - A common problem in ecology is identifying the relationship between relief and site properties obtainable only by point measurements. The method of Multi-Scale Landscape Analysis (MSLA) identifies such correlations. MSLA combines frequency filtering of the digital elevation model (DEM) with an estimation of the optimum filter coefficients using an optimization procedure. Tested using point data of soil decarbonation from a German young moraine landscape, MSLA provided significant results. Implemented within open source software SAMT. MSLA is comfortable and flexible to use, offering applications for numerous other spatial analysis problems. KW - Landscape structure KW - DEM KW - Fourier transformation KW - Wavelet transformation KW - Singular value decomposition KW - SAMT Y1 - 2011 U6 - https://doi.org/10.1016/j.ecoinf.2010.09.002 SN - 1574-9541 VL - 6 IS - 2 SP - 164 EP - 169 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Hain, Mathis P. A1 - Strecker, Manfred A1 - Bookhagen, Bodo A1 - Alonso, Ricardo N. A1 - Pingel, H. A1 - Schmitt, Axel K. T1 - Neogene to quaternary broken foreland formation and sedimentation dynamics in the Andes of NW Argentina (25 degrees S) JF - Tectonics N2 - The northwest Argentine Andes constitute a premier natural laboratory to assess the complex interactions between isolated uplifts, orographic precipitation gradients, and related erosion and sedimentation patterns. Here we present new stratigraphic observations and age information from intermontane basin sediments to elucidate the Neogene to Quaternary shortening history and associated sediment dynamics of the broken Salta foreland. This part of the Andean orogen, which comprises an array of basement-cored range uplifts, is located at similar to 25 degrees S and lies to the east of the arid intraorogenic Altiplano/Puna plateau. In the Salta foreland, spatially and temporally disparate range uplift along steeply dipping inherited faults has resulted in foreland compartmentalization with steep basin-tobasin precipitation gradients. Sediment architecture and facies associations record a three-phase (similar to 10, similar to 5, and <2 Ma), east directed, yet unsystematic evolution of shortening, foreland fragmentation, and ensuing changes in precipitation and sediment transport. The provenance signatures of these deposits reflect the trapping of sediments in the intermontane basins of the Andean hinterland, as well as the evolution of a severed fluvial network. Present-day moisture supply to the hinterland is determined by range relief and basin elevation. The conspiring effects of range uplift and low rainfall help the entrapment and long-term storage of sediments, ultimately raising basin elevation in the hinterland, which may amplify aridification in the orogen interior. Y1 - 2011 U6 - https://doi.org/10.1029/2010TC002703 SN - 0278-7407 VL - 30 IS - 11 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Balcke, Gerd U. A1 - Hahn, M. A1 - Oswald, Sascha T1 - Nitrogen as an indicator of mass transfer during in-situ gas sparging JF - Journal of contaminant hydrology N2 - Aiming at the stimulation of intrinsic microbial activity, pulses of pure oxygen or pressurized air were recurrently injected into groundwater polluted with chlorobenzene. To achieve well-controlled conditions and intensive sampling, a large, vertical underground tank was filled with the local unconfined sandy aquifer material. In the course of two individual gas injections, one using pure oxygen and one using pressurized air, the mass transfer of individual gas species between trapped gas phase and groundwater was studied. Field data on the dissolved gas composition in the groundwater were combined with a kinetic model on gas dissolution and transport in porous media. Phase mass transfer of individual gas components caused a temporary enrichment of nitrogen, and to a lower degree of methane, in trapped gas leading to the formation of excess dissolved nitrogen levels downgradient from the dissolving gas phase. By applying a novel gas sampling method for dissolved gases in groundwater it was shown that dissolved nitrogen can be used as a partitioning tracer to indicate complete gas dissolution in porous media. KW - Inter-phase mass transfer KW - Groundwater KW - Remediation KW - Gas sparging KW - Nitrogen KW - Methane KW - Kinetics KW - Bitterfeld Y1 - 2011 U6 - https://doi.org/10.1016/j.jconhyd.2011.05.005 SN - 0169-7722 VL - 126 IS - 1-2 SP - 8 EP - 18 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Tran Thanh Tuan, A1 - Scherbaum, Frank A1 - Malischewsky, Peter G. T1 - On the relationship of peaks and troughs of the ellipticity (H/V) of Rayleigh waves and the transmission response of single layer over half-space models JF - Geophysical journal international N2 - One of the key challenges in the context of local site effect studies is the determination of frequencies where the shakeability of the ground is enhanced. In this context, the H/V technique has become increasingly popular and peak frequencies of H/V spectral ratio are sometimes interpreted as resonance frequencies of the transmission response. In the present study, assuming that Rayleigh surface wave is dominant in H/V spectral ratio, we analyse theoretically under which conditions this may be justified and when not. We focus on 'layer over half-space' models which, although seemingly simple, capture many aspects of local site effects in real sedimentary structures. Our starting point is the ellipticity of Rayleigh waves. We use the exact formula of the H/V-ratio presented by Malischewsky & Scherbaum (2004) to investigate the main characteristics of peak and trough frequencies. We present a simple formula illustrating if and where H/V-ratio curves have sharp peaks in dependence of model parameters. In addition, we have constructed a map, which demonstrates the relation between the H/V-peak frequency and the peak frequency of the transmission response in the domain of the layer's Poisson ratio and the impedance contrast. Finally, we have derived maps showing the relationship between the H/V-peak and trough frequency and key parameters of the model such as impedance contrast. These maps are seen as diagnostic tools, which can help to guide the interpretation of H/V spectral ratio diagrams in the context of site effect studies. KW - Site effects KW - Theoretical seismology KW - Wave propagation Y1 - 2011 U6 - https://doi.org/10.1111/j.1365-246X.2010.04863.x SN - 0956-540X VL - 184 IS - 2 SP - 793 EP - 800 PB - Wiley-Blackwell CY - Malden ER - TY - JOUR A1 - Mischke, Steffen A1 - Zhang, Chengjun T1 - Ostracod distribution in Ulungur Lake (Xinjiang, China) and a reassessed Holocene record JF - Ecological research N2 - Ostracod shells in surface sediments from Ulungur Lake (Xinjiang, China) belong mainly to Limnocythere inopinata as the dominant species, and Candona neglecta and Darwinula stevensoni as accompanying, less abundant taxa. Shells of an additional nine species were recorded only sporadically. The three most abundant ostracods have wide tolerance ranges in terms of salinity, substrate and water depth. The similarly recorded bivalve Pisidium subtruncatum, and the gastropods Gyraulus chinensis and Radix auricularia belong to the most tolerant representatives of the genera. The bivalve and gastropods, in addition to the ostracod assemblage, reflect the fact that Ulungur Lake has experienced strong lake level and salinity variations due to water withdrawal in the catchment and the counteracting diversion of river waters to the lake in recent decades. The substrate in Ulungur Lake is typically fine-grained, apart from the delta region of the Ulungur River channel, which is marked by relatively coarse-grained detrital sediments barren of ostracod shells. This channel was created 40 years ago to divert water to Ulungur Lake and support its local fisheries and recreational facilities. A reassessed Holocene ostracod record from the lake shows that a significantly higher salinity and lower lake level existed in the early Holocene before 6.0 ka in response to the regional climate. In contrast, a higher lake level and lowest salinity is inferred for the late Holocene period between ca. 3.6 and 1.3 ka before present. Afterwards, the lake level declined and salinity increased in response to regional moisture reduction, although conditions similar to the early Holocene lake status were not re-established. Our surface-sediment-derived data provide a baseline for analysis of future environmental variations due to global climate change and regional water management. KW - Ostracoda KW - Water depth KW - Substrate KW - Holocene KW - Central Asia Y1 - 2011 U6 - https://doi.org/10.1007/s11284-010-0768-1 SN - 0912-3814 VL - 26 IS - 1 SP - 133 EP - 145 PB - Springer CY - Tokyo ER - TY - JOUR A1 - Saki, A. A1 - Moazzen, Mohssen A1 - Oberhänsli, Roland T1 - P-T evolution of the precambrian metamorphic complex, NW Iran a study of metapelitic rocks JF - Geological journal N2 - The Mahneshan Metamorphic Complex (MMC) is one of the Precambrian terrains exposed in the northwest of Iran. The MMC underwent two main phases of deformation (D-1 and D-2) and at least two metamorphic events (M-1 and M-2). Critical metamorphic mineral assemblages in the metapelitic rocks testify to regional metamorphism under amphibolite-facies conditions. The dominant metamorphic mineral assemblage in metapelitic rocks (M-1) is muscovite, biotite I, Garnet I, staurolite, Andalusite I and sillimanite. Peak metamorphism took place at 600-620 degrees C and similar to 7 kbar, corresponding to a depth of ca. 24 km. This was followed by decompression during exhumation of the crustal rocks up to the surface. The decrease of temperature and pressure during exhumation produced retrograde metamorphic assemblages (M-2). Secondary phases such as garnet II biotite It. Andalusite II constrain the temperature and pressure of M, retrograde metamorphism to 520-560 degrees C and 2.5-3.5 kbar, respectively. The geothermal gradient obtained for the peak of metamorphism is 33 degrees C km(-1), which indicates that peak metamorphism was of Barrovian type and occurred under medium-pressure conditions. The MMC followed a 'clockwise' P T path during metamorphism, consistent with thermal relaxation following tectonic thickening. The bulk chemistry of the MMC metapelites shows that their protoliths were deposited at an active continental margin. Together with the presence of palaeo-suture zones and ophiolitic rocks around the high-grade metamorphic rocks of the MMC, these features suggest that the Iranian Precambrian basement formed by an island-arc type cratonization. KW - Mahneshan Metamorphic Complex KW - Iran KW - metapelitic rock KW - bulk chemistry KW - Barrovian-type metamorphism KW - clockwise P-T path Y1 - 2011 U6 - https://doi.org/10.1002/gj.1236 SN - 0072-1050 VL - 46 IS - 1 SP - 10 EP - 25 PB - Wiley-Blackwell CY - Malden ER - TY - JOUR A1 - Albrecht, Tanja A1 - Martin, M. A1 - Haseloff, M. A1 - Winkelmann, Ricarda A1 - Levermann, Anders T1 - Parameterization for subgrid-scale motion of ice-shelf calving fronts JF - The Cryosphere : TC ; an interactive open access journal of the European Geosciences Union N2 - A parameterization for the motion of ice-shelf fronts on a Cartesian grid in finite-difference land-ice models is presented. The scheme prevents artificial thinning of the ice shelf at its edge, which occurs due to the finite resolution of the model. The intuitive numerical implementation diminishes numerical dispersion at the ice front and enables the application of physical boundary conditions to improve the calculation of stress and velocity fields throughout the ice-sheet-shelf system. Numerical properties of this subgrid modification are assessed in the Potsdam Parallel Ice Sheet Model (PISM-PIK) for different geometries in one and two horizontal dimensions and are verified against an analytical solution in a flow-line setup. Y1 - 2011 U6 - https://doi.org/10.5194/tc-5-35-2011 SN - 1994-0416 VL - 5 IS - 1 SP - 35 EP - 44 PB - Copernicus CY - Göttingen ER - TY - THES A1 - Ulrich, Mathias T1 - Permafrost landform studies on Earth : Implications for periglacial landscape evolution and habitability on Mars Y1 - 2011 CY - Potsdam ER - TY - JOUR A1 - Hajialioghli, Robab A1 - Moazzen, Mohssen A1 - Jahangiri, Ahmad A1 - Oberhänsli, Roland A1 - Mocek, Beate A1 - Altenberger, Uwe T1 - Petrogenesis and tectonic evolution of metaluminous sub-alkaline granitoids from the Takab Complex, NW Iran JF - Geological magazine N2 - The Takab complex is composed of a variety of metamorphic rocks including amphibolites, metapelites, mafic granulites, migmatites and meta-ultramafics, which are intruded by the granitoid. The granitoid magmatic activity occurred in relation to the subduction of the Neo-Tethys oceanic crust beneath the Iranian crust during Tertiary times. The granitoids are mainly granodiorite, quartz monzodiorite, monzonite and quartz diorite. Chemically, the magmatic rocks are characterized by ASI < 1.04, AI < 0.87 and high contents of CaO (up to similar to 14.5 wt %), which are consistent with the I-type magmatic series. Low FeO(t)/(FeO(t)+MgO) values (< 0.75) as well as low Nb, Y and K(2)O contents of the investigated rocks resemble the calc-alkaline series. Low SiO(2), K(2)O/Na(2)O and Al(2)O(3) accompanied by high CaO and FeO contents indicate melting of metabasites as an appropriate source for the intrusions. Negative Ti and Nb anomalies verify a metaluminous crustal origin for the protoliths of the investigated igneous rocks. These are comparable with compositions of the associated mafic migmatites, in the Takab metamorphic complex, which originated from the partial melting of amphibolites. Therefore, crustal melting and a collision-related origin for the Takab calc-alkaline intrusions are proposed here on the basis of mineralogy and geochemical characteristics. The P-T evolution during magmatic crystallization and subsolidus cooling stages is determined by the study of mineral chemistry of the granodiorite and the quartz diorite. Magmatic crystallization pressure and temperature for the quartz-diorite and the granodiorite are estimated to be P similar to 7.8 +/- 2.5 kbar, T similar to 760 +/- 75 degrees C and P similar to 5 +/- 1 kbar, T similar to 700 degrees C, respectively. Subsolidus conditions are consistent with temperatures of similar to 620 degrees C and similar to 600 degrees C, and pressures of similar to 5 kbar and similar to 3.5 kbar for the quartz-diorite and the granodiorite, respectively. KW - granitoids KW - partial melting KW - Neo-Tethys KW - Takab KW - NW Iran Y1 - 2011 U6 - https://doi.org/10.1017/S0016756810000683 SN - 0016-7568 VL - 148 IS - 2 SP - 250 EP - 268 PB - Cambridge Univ. Press CY - New York ER - TY - JOUR A1 - Guzman, S. A1 - Petrinovic, I. A. A1 - Brod, J. A. A1 - Hongn, Fernando D. A1 - Seggiaro, R. E. A1 - Montero, C. A1 - Carniel, Roberto A1 - Dantas, E. L. A1 - Sudo, Masafumi T1 - Petrology of the Luingo caldera (SE margin of the Puna plateau) a middle Miocene window of the arc-back arc configuration JF - Journal of volcanology and geothermal research N2 - We describe the petrographic characteristics, whole-rock geochemistry and mineral chemistry of rocks from the Pucarilla-Cerro Tipillas Volcanic Complex with emphasis on the rocks belonging to the middle Miocene Luingo caldera, located in the south-eastern portion of the Central Volcanic Zone (CVZ) of the Andes. We modelled the petrogenesis of the Luingo caldera rocks as a mixture of ca. 20% crustal magmas and 80% of mantle magmas by AFC with recharge processes. A comparison of Luingo geochemical data with the composition of Miocene-Pliocene volcanic rocks from the broad area, points to major thickening events during the middle Miocene for the western portion and during the upper Miocene for the eastern portion of the Southern CVZ. In the eastern sector (similar to 66 degrees W) the mantle source appears to change from a spinel-lherzolite type for the middle Miocene to a garnet-lherzolite type for the upper Miocene-Pliocene magmas. The areal distribution of the volcanic products led to the recognition of approximately equivalent areas covered by volcanic rocks both in the eastern and in the western Puna borders. This indicates a broad arc, which was structurally controlled at the proto-Puna/Puna margins, whose geochemical differences are related with variations in crustal thicknesses and heterogeneous mantle sources from west to east. KW - Luingo caldera KW - Central Andes KW - Miocene volcanism KW - Southern Central Volcanic Zone KW - crustal thickness Y1 - 2011 U6 - https://doi.org/10.1016/j.jvolgeores.2010.12.008 SN - 0377-0273 VL - 200 IS - 3-4 SP - 171 EP - 191 PB - Elsevier CY - Amsterdam ER - TY - GEN A1 - Busch, Jan Philip A1 - Meißner, Tobias A1 - Potthoff, Annegret A1 - Oswald, Sascha T1 - Plating of nano zero-valent iron (nZVI) on activated carbon : a fast delivery method of iron for source remediation? N2 - The use of nano zerovalent iron (nZVI) for environmental remediation is a promising new technique for in situ remediation. Due to its high surface area and high reactivity, nZVI is able to dechlorinate organic contaminants and render them harmless. Limited mobility, due to fast aggregation and sedimentation of nZVI, limits the capability for source and plume remediation. Carbo-Iron is a newly developed material consisting of activated carbon particles (d50 = 0,8 µm) that are plated with nZVI particles. These particles combine the mobility of activated carbon and the reactivity of nZVI. This paper presents the first results of the transport experiments. N2 - Der Einsatz von elementarem Nanoeisen ist eine vielversprechende Technik zur Sanierung von Altlastenschadensfällen. Aufgrund der hohen Oberfläche und der hohen Reaktivität kannn ZVI chlororganische Schadstoffe dechlorieren und zu harmlosen Substanzen umwandeln. Der Einsatz von Nanoeisen zur Quellen- und Fahnensanierung wird jedoch durch mangelnde Mobilität im Boden im eingeschränkt. Carbo-Iron ist ein neu entwickeltes Material, das aus Aktivkohlepartikeln (d50 = 0,8 µm) und nZVI besteht. Diese Partikel kombinieren die Mobilit ät von Aktivkohle mit der Reaktivität von nZVI. Dieser Artikel beschreibt erste Ergebnisse von Transportuntersuchungen. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - paper 165 KW - Carbo-Iron KW - Nanoeisen KW - nZVI KW - Grundwassersanierung KW - Carbo-Iron KW - nano zero-valent iron KW - nZVI KW - remediation Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-53792 ER - TY - JOUR A1 - Lück, Erika A1 - Rühlmann, Jörg A1 - Kirchmann, Holger T1 - Properties of soils from the Swedish long-term fertility experiments VI. Mapping soil electrical conductivity with different geophysical methods JF - Acta agriculturae Scandinavica : Section B, Soil and plant science N2 - Swedish long-term soil fertility experiments were used to investigate the effect of texture and fertilization regime on soil electrical conductivity. In one geophysical approach, fields were mapped to characterize the horizontal variability in apparent electrical conductivity down to 1.5 m soil depth using an electromagnetic induction meter (EM38 device). The data obtained were geo-referenced by dGPS. The other approach consisted of measuring the vertical variability in electrical conductivity along transects using a multi-electrode apparatus for electrical resistivity tomography (GeoTom RES/IP device) down to 2 m depth. Geophysical field work was complemented by soil analyses. The results showed that despite 40 years of different fertilization regimes, treatments had no significant effects on the apparent electrical conductivity. Instead, the comparison of sites revealed high and low conductivity soils, with gradual differences explained by soil texture. A significant, linear relationship found between apparent electrical conductivity and soil clay content explained 80% of the variability measured. In terms of soil depth, both low and high electrical conductivity values were measured. Abrupt changes in electrical conductivity within a field revealed the presence of 'deviating areas'. Higher values corresponded well with layers with a high clay content, while local inclusions of coarse-textured materials caused a high variability in conductivity in some fields. The geophysical methods tested provided useful information on the variability in soil texture at the experimental sites. The use of spatial EC variability as a co-variable in statistical analysis could be a complementary tool in the evaluation of experimental results. KW - Conductivity depth model KW - conductivity map KW - electrical resistivity KW - soil heterogeneity Y1 - 2011 U6 - https://doi.org/10.1080/09064710.2010.502124 SN - 0906-4710 VL - 61 IS - 5 SP - 438 EP - 447 PB - Taylor & Francis Group CY - Oslo ER - TY - JOUR A1 - Clarke, Brian A. A1 - Burbank, Douglas W. T1 - Quantifying bedrock-fracture patterns within the shallow subsurface Implications for rock mass strength, bedrock landslides, and erodibility JF - Journal of geophysical research : Earth surface N2 - The role of bedrock fractures and rock mass strength is often considered a primary influence on the efficiency of surface processes and the morphology of landscapes. Quantifying bedrock characteristics at hillslope scales, however, has proven difficult. Here, we present a new field-based method for quantifying the depth and apparent density of bedrock fractures within the shallow subsurface based on seismic refraction surveys. We examine variations in subsurface fracture patterns in both Fiordland and the Southern Alps of New Zealand to better constrain the influence of bedrock properties in governing rates and patterns of landslides, as well as the morphology of threshold landscapes. We argue that intense tectonic deformation produces uniform bedrock fracturing with depth, whereas geomorphic processes produce strong fracture gradients focused within the shallow subsurface. Additionally, we argue that hillslope strength and stability are functions of both the intact rock strength and the density of bedrock fractures, such that for a given intact rock strength, a threshold fracture-density exists that delineates between stable and unstable rock masses. In the Southern Alps, tectonic forces have pervasively fractured intrinsically weak rock to the verge of instability, such that the entire rock mass is susceptible to failure and landslides can potentially extend to great depths. Conversely, in Fiordland, tectonic fracturing of the strong intact rock has produced fracture densities less than the regional stability threshold. Therefore, bedrock failure in Fiordland generally occurs only after geomorphic fracturing has further reduced the rock mass strength. This dependence on geomorphic fracturing limits the depths of bedrock landslides to within this geomorphically weakened zone. Y1 - 2011 U6 - https://doi.org/10.1029/2011JF001987 SN - 2169-9003 SN - 2169-9011 VL - 116 IS - 20 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Wang, Yongbo A1 - Herzschuh, Ulrike T1 - Reassessment of Holocene vegetation change on the upper Tibetan Plateau using the pollen-based REVEALS model JF - Review of palaeobotany and palynology : an international journal N2 - Previous studies based on fossil pollen data have reported significant changes in vegetation on the alpine Tibetan Plateau during the Holocene. However, since the relative proportions of fossil pollen taxa are largely influenced by individual pollen productivities and the dispersal characteristics, such inferences on vegetation have the potential to be considerably biased. We therefore examined the modern pollen-vegetation relationships for four common pollen species on the Tibetan Plateau, using Extended R-value (ERV) models. Assuming an average radius of 100 m for the sampled lakes, we estimated the relevant source area of pollen (RSAP) to be 2200 m (which represents the distance from the lake). Using Poaceae as the reference taxa (Pollen Productivity Estimate, PPE = 1), ERV Submodel 2 derived relative high PPEs for the steppe and desert taxa: 2.079 +/- 0.432 for Artemisia and 5.379 +/- 1.077 for Chenopodiaceae. Low PPEs were estimated for the Cyperaceae (1.036 +/- 0.012). whose plants are characteristic of the alpine Kobresia meadows. Applying these PPEs to four fossil pollen sequences since the Late Glacial, the plant abundances on the central and north-eastern Tibetan Plateau were quantified using the "Regional Estimates of Vegetation Abundance from Large Sites" (REVEALS) model. The proportions of Artemisia and Chenopodiaceae were greatly reduced compared to their original pollen percentages in the reconstructed vegetation, owing to their high productivities and their dispersal characteristics, while Cyperaceae showed a relative increase in the vegetation reconstruction. The reconstructed vegetation assemblages of the four pollen sequence sites always yielded smaller compositional species turnovers than suggested by the pollen spectra, as revealed by Detrended Canonical Correspondence Analyses (DCCA) of the Holocene sections. The strength of the previously reported vegetation changes may therefore have been overestimated, which indicates the importance of taking into account pollen-vegetation relationships when discussing the potential drivers (such as climate, land use, atmospheric CO(2) concentrations) and implications (such as for land surface-climate feedbacks, carbon storage, and biodiversity) of vegetation change. KW - pollen productivity KW - vegetation reconstruction KW - ERV model KW - REVEALS model KW - Holocene KW - Tibetan Plateau Y1 - 2011 U6 - https://doi.org/10.1016/j.revpalbo.2011.09.004 SN - 0034-6667 VL - 168 IS - 1 SP - 31 EP - 40 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Kieling, Katrin A1 - Rößler, Dirk A1 - Krüger, Frank T1 - Receiver function study in northern Sumatra and the Malaysian peninsula JF - Journal of seismology N2 - In this receiver function study, we investigate the structure of the crust beneath six seismic broadband stations close to the Sunda Arc formed by subduction of the Indo-Australian under the Sunda plate. We apply three different methods to analyse receiver functions at single stations. A recently developed algorithm determines absolute shear-wave velocities from observed frequency-dependent apparent incidence angles of P waves. Using waveform inversion of receiver functions and a modified Zhu and Kanamori algorithm, properties of discontinuities such as depth, velocity contrast, and sharpness are determined. The combination of the methods leads to robust results. The approach is validated by synthetic tests. Stations located on Malaysia show high-shear-wave velocities (V (S)) near the surface in the range of 3.4-3.6 km s (-aEuro parts per thousand 1) attributed to crystalline rocks and 3.6-4.0 km s (-aEuro parts per thousand 1) in the lower crust. Upper and lower crust are clearly separated, the Moho is found at normal depths of 30-34 km where it forms a sharp discontinuity at station KUM or a gradient at stations IPM and KOM. For stations close to the subduction zone (BSI, GSI and PSI) complexity within the crust is high. Near the surface low V (S) of 2.6-2.9 km s (-aEuro parts per thousand 1) indicate sediment layers. High V (S) of 4.2 km s (-aEuro parts per thousand 1) are found at depth greater than 6 and 2 km at BSI and PSI, respectively. There, the Moho is located at 37 and 40 km depth. At station GSI, situated closest to the trench, the subducting slab is imaged as a north-east dipping structure separated from the sediment layer by a 10 km wide gradient in V (S) between 10 and 20 km depth. Within the subducting slab V (S) a parts per thousand aEuro parts per thousand 4.7 km s (-aEuro parts per thousand 1). At station BSI, the subducting slab is found at depth between 90 and 110 km dipping 20A degrees +/- 8A degrees in approximately N 60A degrees E. A velocity increase in similar depth is indicated at station PSI, however no evidence for a dipping layer is found. KW - Receiver functions KW - Absolute shear-wave velocity KW - Sumatra KW - Subduction zone structure Y1 - 2011 U6 - https://doi.org/10.1007/s10950-010-9222-7 SN - 1383-4649 VL - 15 IS - 2 SP - 235 EP - 259 PB - Springer CY - Dordrecht ER - TY - THES A1 - Fernandoy, Francisco T1 - Recent climate variability at the Antartica Peninsula and coastal Dronning Maud Land, based on stable water isotope data Y1 - 2011 CY - Potsdam ER - TY - JOUR A1 - Wischnewski, Juliane A1 - Mischke, Steffen A1 - Wang, Yongbo A1 - Herzschuh, Ulrike T1 - Reconstructing climate variability on the northeastern Tibetan Plateau since the last Lateglacial - a multi-proxy, dual-site approach comparing terrestrial and aquatic signals JF - Quaternary science reviews : the international multidisciplinary research and review journal N2 - A sediment core from a closed basin lake (Lake Kuhai) from the semi-arid northeastern Tibetan Plateau was analysed for its pollen record to infer Lateglacial and post glacial vegetation and climatic change. At Lake Kuhai five major vegetation and climate shifts could be identified: (1) a change from cold and dry to relatively warmer and more moist conditions at 14.8 cal ka BP: (2) a shift to conditions of higher effective moisture and a stepwise warmer climate at 13.6 cal ka BP; (3) a further shift with increased moisture but colder conditions at 7.0 cal ka BP; (4) a return to a significantly colder and drier phase at 6.3 cal ka BP; (5) and a change back to relatively moist conditions at 2.2 cal ka BP. To investigate the response of lake ecosystems to climatic changes, statistical comparisons were made between the lake Kuhai pollen record and a formerly published ostracod and sedimentary record from the same sediment core. Furthermore, the pollen and lacustrine proxies from lake Kuhai were compared to a previously published pollen and lacustrine record from the nearby Lake Koucha. Statistical comparisons were done using non-metric multidimensional scaling and Procrustes rotation. Differences between lacustrine and pollen responses within one site could be identified, suggesting that lacustrine proxies are partly influenced by in-lake or local catchment processes, whereas the terrestrial (pollen) proxy shows a regional climate signal. Furthermore, we found regional differences in proxy response between lake Kuhai and Lake Koucha. Both pollen records reacted in similar ways to major environmental changes, with minor differences in the timing and magnitude of these changes. The lacustrine records were very similar in their timing and magnitude of response to environmental changes; however, the nature of change was at times very distinct. To place the current study in the context of Holocene moisture evolution across the Tibetan Plateau, we applied a five-scale moisture index and average link clustering to all available continuous palaeo-climate records from the Tibetan Plateau to possibly find general patterns of moisture evolution on the Plateau. However, no common regional pattern of moisture evolution during the Holocene could be detected. We assign this to complex responses of different proxies to environmental and atmospheric changes in an already very heterogeneous mountain landscape where minor differences in elevation can cause strong variation in microenvironments. Y1 - 2011 U6 - https://doi.org/10.1016/j.quascirev.2010.10.001 SN - 0277-3791 VL - 30 IS - 1-2 SP - 82 EP - 97 PB - Elsevier CY - Oxford ER - TY - THES A1 - Wischnewski, Juliane T1 - Reconstructing climate variability on the Tibetan Plateau : comparing aquatic and terrestrial signals T1 - Klimarekonstruktionen auf dem Tibet Plateau : aquatische und terrestrische Signale im Vergleich N2 - Spatial and temporal temperature and moisture patterns across the Tibetan Plateau are very complex. The onset and magnitude of the Holocene climate optimum in the Asian monsoon realm, in particular, is a subject of considerable debate as this time period is often used as an analogue for recent global warming. In the light of contradictory inferences regarding past climate and environmental change on the Tibetan Plateau, I have attempted to explain mismatches in the timing and magnitude of change. Therefore, I analysed the temporal variation of fossil pollen and diatom spectra and the geochemical record from palaeo-ecological records covering different time scales (late Quaternary and the last 200 years) from two core regions in the NE and SE Tibetan Plateau. For interpretation purposes I combined my data with other available palaeo-ecological data to set up corresponding aquatic and terrestrial proxy data sets of two lake pairs and two sets of sites. I focused on the direct comparison of proxies representing lacustrine response to climate signals (e.g., diatoms, ostracods, geochemical record) and proxies representing changes in the terrestrial environment (i.e., terrestrial pollen), in order to asses whether the lake and its catchments respond at similar times and magnitudes to environmental changes. Therefore, I introduced the established numerical technique procrustes rotation as a new approach in palaeoecology to quantitatively compare raw data of any two sedimentary records of interest in order to assess their degree of concordance. Focusing on the late Quaternary, sediment cores from two lakes (Kuhai Lake 35.3°N; 99.2°E; 4150 m asl; and Koucha Lake 34.0°N; 97.2°E; 4540 m asl) on the semi-arid northeastern Tibetan Plateau were analysed to identify post-glacial vegetation and environmental changes, and to investigate the responses of lake ecosystems to such changes. Based on the pollen record, five major vegetation and climate changes could be identified: (1) A shift from alpine desert to alpine steppe indicates a change from cold, dry conditions to warmer and more moist conditions at 14.8 cal. ka BP, (2) alpine steppe with tundra elements points to conditions of higher effective moisture and a stepwise warming climate at 13.6 cal. ka BP, (3) the appearance of high-alpine meadow vegetation indicates a further change towards increased moisture, but with colder temperatures, at 7.0 cal. ka BP, (4) the reoccurrence of alpine steppe with desert elements suggests a return to a significantly colder and drier phase at 6.3 cal. ka BP, and (5) the establishment of alpine steppe-meadow vegetation indicates a change back to relatively moist conditions at 2.2 cal. ka BP. To place the reconstructed climate inferences from the NE Tibetan Plateau into the context of Holocene moisture evolution across the Tibetan Plateau, I applied a five-scale moisture index and average link clustering to all available continuous pollen and non-pollen palaeoclimate records from the Tibetan Plateau, in an attempt to detect coherent regional and temporal patterns of moisture evolution on the Plateau. However, no common temporal or spatial pattern of moisture evolution during the Holocene could be detected, which can be assigned to the complex responses of different proxies to environmental changes in an already very heterogeneous mountain landscape, where minor differences in elevation can result in marked variations in microenvironments. Focusing on the past 200 years, I analysed the sedimentary records (LC6 Lake 29.5°N, 94.3°E, 4132 m asl; and Wuxu Lake 29.9°N, 101.1°E, 3705 m asl) from the southeastern Tibetan Plateau. I found that despite presumed significant temperature increases over that period, pollen and diatom records from the SE Tibetan Plateau reveal only very subtle changes throughout their profiles. The compositional species turnover investigated over the last 200 years appears relatively low in comparison to the species reorganisations during the Holocene. The results indicate that climatically induced ecological thresholds are not yet crossed, but that human activity has an increasing influence, particularly on the terrestrial ecosystem. Forest clearances and reforestation have not caused forest decline in our study area, but a conversion of natural forests to semi-natural secondary forests. The results from the numerical proxy comparison of the two sets of two pairs of Tibetan lakes indicate that the use of different proxies and the work with palaeo-ecological records from different lake types can cause deviant stories of inferred change. Irrespective of the timescale (Holocene or last 200 years) or region (SE or NE Tibetan Plateau) analysed, the agreement in terms of the direction, timing, and magnitude of change between the corresponding terrestrial data sets is generally better than the match between the corresponding lacustrine data sets, suggesting that lacustrine proxies may partly be influenced by in-lake or local catchment processes whereas the terrestrial proxy reflects a more regional climatic signal. The current disaccord on coherent temporal and spatial climate patterns on the Tibetan Plateau can partly be ascribed to the complexity of proxy response and lake systems on the Tibetan Plateau. Therefore, a multi-proxy, multi-site approach is important in order to gain a reliable climate interpretation for the complex mountain landscape of the Tibetan Plateau. N2 - Die räumlichen und zeitlichen Temperatur- und Feuchtigkeitsmuster auf dem Tibet-Plateau sind sehr komplex. Im Einzugsbereich der asiatischen Monsune sind insbesondere der Beginn und das Ausmaß des Klimaoptimums während des Holozäns von wissenschaftlichem Interesse, da diese Periode oft als Analogie für die derzeitige globale Klimaerwärmung herangezogen wird. In Hinblick auf sich teilweise widersprechende Paläoklima- und Umweltrekonstruktionen für das Tibet-Plateau, ist es mein Ziel, die bestehenden Unstimmigkeiten bezüglich des Zeitpunktes und des Ausmaßes des Umweltwandels zu erklären. Dafür wurden von mir zeitliche Variationen fossiler Pollen- und Diatomeenspektren und geochemische Untersuchungen an Seesedimenten unterschiedlicher Zeitskalen (Spätquartär und die letzten 200 Jahre) aus zwei Kernregionen auf dem NO und SO Tibet-Plateau analysiert. Zur Unterstützung der Interpretation wurden die hier erhobenen Daten mit bereits vorhandenen paläoökologischen Aufzeichnungen der Lokalitäten kombiniert, um Datensätze der entsprechenden aquatischen und terrestrischen Proxy-Daten (Stellvertreterdaten) zweier Seenpaare aus den beiden Regionen gegenüberstellen zu können. Hierbei konzentrierte ich mich auf den direkten Vergleich von Proxies, die die Seenentwicklung reflektieren (z.B. Diatomeen, Ostracoden, geochemische Eigenschaften), mit Proxies, die Veränderungen der terrestrischen Umgebung des Sees beschreiben (terrestrische Pollen). Durch diesen Vergleich lässt sich beurteilen, ob Veränderungen im See selbst mit Umweltveränderungen in dem jeweiligen Einzugsgebiet zeitlich übereinstimmen. Dafür habe ich die bereits etablierte numerische Methode Procrustes-Rotation als neuen Ansatz in der Paläoökologie eingeführt. Damit ist ein quantitativer Vergleich von Rohdaten zweier beliebiger sedimentärer Datensätze möglich, um den Grad der Übereinstimmung zu prüfen. Um die in dieser Arbeit rekonstruierten Umwelt- und Klimaereignisse des nordöstlichen Tibet-Plateaus in einen größeren Zusammenhang hinsichtlich holozäner Klimaentwicklung des gesamten Plateaus setzen zu können, und um schlüssige zeitliche und räumliche Klimatrends auf dem Plateau erkennen zu können, habe ich auf alle vorhandenen Paläoklimadatensätze einen Fünf-Skalen Feuchtigkeitsindex und eine Clusteranalyse angewandt. Es konnten jedoch keine einheitlichen zeitlichen und räumlichen Trends der holozänen Klimaentwicklung nachgewiesen werden, was meiner Analyse entsprechend, auf die komplexen Reaktionen verschiedener Proxies auf Umweltveränderungen in einer ohnehin sehr heterogen Berglandschaft, zurückgeführt werden kann. Die Ergebnisse des numerischen Proxy-Vergleichs beider Seenpaare zeigen, dass die Verwendung von verschiedenen Proxies und die Arbeit mit paläo-ökologischen Datensätzen unterschiedlicher See-Typen zu abweichenden Klimaableitungen führen können. Unabhängig vom untersuchten Zeitraum (Holozän oder die letzten 200 Jahren) oder der Region (SO oder NO Tibet-Plateau), ist die Übereinstimmung zweier Datensätze hinsichtlich der Richtung, des Zeitpunktes und des Ausmaßes der abgeleiteten Paläo-Umweltverhältnisse in der Regel zwischen den entsprechenden terrestrischen Datensätzen besser als zwischen den entsprechenden lakustrinen Datensätzen. Die derzeitige Uneinigkeit über stimmige zeitliche und räumliche Klimatrends auf dem Tibet-Plateau kann daher teilweise der Komplexität der verschieden Proxies und ihrer individuellen Empfindlichkeiten gegenüber Umweltveränderungen sowie der unterschiedlichen Reaktionsweise verschiedenartiger See-Systeme auf dem Plateau zugeschrieben werden. Meine Ergebnisse zeigen, dass ein „Multi-Proxy-Multi-Site-Ansatz“ für zuverlässige Paläoklimaableitungen für das Tibet-Plateau von zentraler Bedeutung ist. KW - Tibet Plateau KW - Holozän KW - Pollen KW - Diatomeen KW - Prokrustes Analyse KW - Tibetan Plateau KW - Holocene KW - Pollen KW - Diatoms KW - Procrustes rotation analysis Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-52453 ER -