TY - JOUR A1 - Ramachandran, Varsha A1 - Oskinova, Lida A1 - Hamann, Wolf-Rainer T1 - Discovery of O stars in the tidal Magellanic Bridge BT - Stellar parameters, abundances, and feedback of the nearest metal-poor massive stars and their implication for the Magellanic System ecology JF - Astronomy and astrophysics : an international weekly journal / European Southern Observatory (ESO). Section: Galactic structure, stellar clusters and populations N2 - The Magellanic Bridge, stretching between the Small and the Large Magellanic Cloud (SMC and LMC), is the nearest tidally stripped intergalactic environment. The Bridge has a significantly low average metallicity of Z less than or similar to 0.1 Z(circle dot). Here we report the first discovery of O-type stars in the Magellanic Bridge. Three massive O stars were identified thanks to the archival spectra obtained by the ESO's Very Large Telescope FLAMES instrument. We analyze the spectra of each star using the Potsdam Wolf-Rayet (PoWR) non-local thermodynamic equilibrium model atmosphere code, which provides the physical parameters, ionizing photon fluxes, and surface abundances. The ages of the newly discovered O stars suggest that star formation in the Bridge is ongoing. Furthermore, the discovery of O stars in the Bridge implies that tidally stripped galactic tails containing low-density but highly dynamical gas are capable of producing massive O stars. The multi-epoch spectra indicate that all three O stars are binaries. Despite their spatial proximity to one another, these O stars are chemically distinct. One of them is a fast-rotating giant with nearly LMC-like abundances. The other two are main-sequence stars that rotate extremely slowly and are strongly metal depleted. We discover the most nitrogen-poor O star known to date. Taking into account the previous analyses of B stars in the Bridge, we interpret the various metal abundances as the signature of a chemically inhomogeneous interstellar medium (ISM), suggesting that the Bridge gas might have accreted during multiple episodes of tidal interaction between the Clouds. Attributing the lowest derived metal content to the primordial gas, the time of the initial formation of the Bridge may date back several billion years. Using the Gaia and Galex color-magnitude diagrams, we roughly estimate the total number of O stars in the Bridge and their total ionizing radiation. Comparing this with the energetics of the diffuse ISM, we find that the contribution of the hot stars to the ionizing radiation field in the Bridge is less than 10% and conclude that the main sources of ionizing photons are leaks from the LMC and SMC. We estimate a lower limit for the fraction of ionizing radiation that escapes from these two dwarf galaxies. KW - stars: massive KW - stars: fundamental parameters KW - stars: abundances KW - Magellanic Clouds KW - techniques: spectroscopic KW - stars: atmospheres Y1 - 2021 U6 - https://doi.org/10.1051/0004-6361/202039486 SN - 1432-0746 SN - 0004-6361 VL - 646 PB - EDP Sciences CY - Les Ulis ER - TY - GEN A1 - Todt, Helge Tobias A1 - Peña, Miriam A1 - Zühlke, Julia A1 - Oskinova, Lida A1 - Hamann, Wolf-Rainer A1 - Gräfener, Götz T1 - Weak emission line central stars of planetary nebulae T2 - Planetary Nebulae: an Eye to the Future N2 - To understand the evolution and morphology of planetary nebulae, a detailed knowledge of their central stars is required. Central stars that exhibit emission lines in their spectra, indicating stellar mass-loss allow to study the evolution of planetary nebulae in action. Emission line central stars constitute about 10 % of all central stars. Half of them are practically hydrogen-free Wolf-Rayet type central stars of the carbon sequence, [WC], that show strong emission lines of carbon and oxygen in their spectra. In this contribution we address the weak emission-lines central stars (wels). These stars are poorly analyzed and their hydrogen content is mostly unknown. We obtained optical spectra, that include the important Balmer lines of hydrogen, for four weak emission line central stars. We present the results of our analysis, provide spectral classification and discuss possible explanations for their formation and evolution. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 462 KW - stars: AGB and post-AGB KW - stars: Wolf-Rayet KW - stars: abundances Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-413775 ER - TY - JOUR A1 - Reindl, Nicole A1 - Rauch, Thomas A1 - Parthasarathy, M. A1 - Werner, K. A1 - Kruk, J. W. A1 - Hamann, Wolf-Rainer A1 - Sander, Andreas Alexander Christoph A1 - Todt, Helge Tobias T1 - The rapid evolution of the exciting star of the Stingray nebula JF - Astronomy and astrophysics : an international weekly journal N2 - Context. SAO 244567, the exciting star of the Stingray nebula, is rapidly evolving. Previous analyses suggested that it has heated up from an effective temperature of about 21 kK in 1971 to over 50 kK in the 1990s. Canonical post-asymptotic giant branch evolution suggests a relatively high mass while previous analyses indicate a low-mass star. Aims. A comprehensive model-atmosphere analysis of UV and optical spectra taken during 1988-2006 should reveal the detailed temporal evolution of its atmospheric parameters and provide explanations for the unusually fast evolution. Methods. Fitting line profiles from static and expanding non-LTE model atmospheres to the observed spectra allowed us to study the temporal change of effective temperature, surface gravity, mass-loss rate, and terminal wind velocity. In addition, we determined the chemical composition of the atmosphere. Results. We find that the central star has steadily increased its effective temperature from 38 kK in 1988 to a peak value of 60 kK in 2002. During the same time, the star was contracting, as concluded from an increase in surface gravity from log g = 4.8 to 6.0 and a drop in luminosity. Simultaneously, the mass-loss rate declined from log(M/M-circle dot yr(-1)) = -9.0 to -11.6 and the terminal wind velocity increased from v(infinity) = 1800 km s(-1) to 2800 km s(-1). Since around 2002, the star stopped heating and has cooled down again to 55 kK by 2006. It has a largely solar surface composition with the exception of slightly subsolar carbon, phosphorus, and sulfur. The results are discussed by considering different evolutionary scenarios. Conclusions. The position of SAO 244567 in the log T-eff-log g plane places the star in the region of sdO stars. By comparison with stellar-evolution calculations, we confirm that SAO 244567 must be a low-mass star (M < 0.55 M-circle dot). However, the slow evolution of the respective stellar evolutionary models is in strong contrast to the observed fast evolution and the young planetary nebula with a kinematical age of only about 1000 years. We speculate that the star could be a late He-shell flash object. Alternatively, it could be the outcome of close-binary evolution. Then SAD 244567 would be a low-mass (0.354 M-circle dot) helium pre-white dwarf after the common-envelope phase, during which the planetary nebula was ejected. KW - stars: abundances KW - stars: evolution KW - stars: AGB and post-AGB KW - stars: individual: SAO 244567 KW - stars: fundamental parameters KW - planetary nebulae: individual: Stingray nebula (Henize 3-1357) Y1 - 2014 U6 - https://doi.org/10.1051/0004-6361/201323189 SN - 0004-6361 SN - 1432-0746 VL - 565 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Todt, Helge Tobias A1 - Kniazev, A. Y. A1 - Gvaramadze, V. V. A1 - Hamann, Wolf-Rainer A1 - Buckley, D. A1 - Crause, L. A1 - Crawford, S. M. A1 - Gulbis, A. A. S. A1 - Hettlage, C. A1 - Hooper, E. A1 - Husser, T. -O. A1 - Kotze, P. A1 - Loaring, N. A1 - Nordsieck, K. H. A1 - O'Donoghue, D. A1 - Pickering, T. A1 - Potter, S. A1 - Romero-Colmenero, E. A1 - Vaisanen, P. A1 - Williams, T. A1 - Wolf, M. T1 - Abell 48-a rare WN-type central star of a planetary nebula JF - Monthly notices of the Royal Astronomical Society N2 - A considerable fraction of the central stars of planetary nebulae (CSPNe) are hydrogen-deficient. Almost all of these H-deficient central stars (CSs) display spectra with strong carbon and helium lines. Most of them exhibit emission-line spectra resembling those of massive WC stars. Therefore these stars are classed as CSPNe of spectral type [WC]. Recently, quantitative spectral analysis of two emission-line CSs, PB 8 and IC 4663, revealed that these stars do not belong to the [WC] class. Instead PB 8 has been classified as [WN/WC] type and IC 4663 as [WN] type. In this work we report the spectroscopic identification of another rare [WN] star, the CS of Abell 48. We performed a spectral analysis of Abell 48 with the Potsdam Wolf-Rayet (PoWR) models for expanding atmospheres. We find that the expanding atmosphere of Abell 48 is mainly composed of helium (85 per cent by mass), hydrogen (10 per cent) and nitrogen (5 per cent). The residual hydrogen and the enhanced nitrogen abundance make this object different from the other [WN] star IC 4663. We discuss the possible origin of this atmospheric composition. KW - stars: abundances KW - stars: AGB and post-AGB KW - stars: mass-loss KW - stars: Wolf-Rayet KW - planetary nebulae: general KW - planetary nebulae: individual: PN G029.0+00.4 Y1 - 2013 U6 - https://doi.org/10.1093/mnras/stt056 SN - 0035-8711 SN - 1365-2966 VL - 430 IS - 3 SP - 2302 EP - 2312 PB - Oxford Univ. Press CY - Oxford ER -