TY - THES A1 - Pampel, Jonas T1 - Ionothermal carbon materials T1 - Ionothermale Kohlenstoffmaterialien BT - advanced synthesis and electrochemical applications BT - erweiterte Synthese und elektrochemische Anwendungen N2 - Alternative concepts for energy storage and conversion have to be developed, optimized and employed to fulfill the dream of a fossil-independent energy economy. Porous carbon materials play a major role in many energy-related devices. Among different characteristics, distinct porosity features, e.g., specific surface area (SSA), total pore volume (TPV), and the pore size distribution (PSD), are important to maximize the performance in the final device. In order to approach the aim to synthesize carbon materials with tailor-made porosity in a sustainable fashion, the present thesis focused on biomass-derived precursors employing and developing the ionothermal carbonization. During the ionothermal carbonization, a salt melt simultaneously serves as solvent and porogen. Typically, eutectic mixtures containing zinc chloride are employed as salt phase. The first topic of the present thesis addressed the possibility to precisely tailor the porosity of ionothermal carbon materials by an experimentally simple variation of the molar composition of the binary salt mixture. The developed pore tuning tool allowed the synthesis of glucose derived carbon materials with predictable SSAs in the range of ~ 900 to ~ 2100 m2 g-1. Moreover, the nucleobase adenine was employed as precursor introducing nitrogen functionalities in the final material. Thereby, the chemical properties of the carbon materials are varied leading to new application fields. Nitrogen doped carbons (NDCs) are able to catalyze the oxygen reduction reaction (ORR) which takes place on the cathodic site of a fuel cell. The herein developed porosity tailoring allowed the synthesis of adenine derived NDCs with outstanding SSAs of up to 2900 m2 g-1 and very large TPV of 5.19 cm3 g-1. Furthermore, the influence of the porosity on the ORR could be directly investigated enabling the precise optimization of the porosity characteristics of NDCs for this application. The second topic addressed the development of a new method to investigate the not-yet unraveled mechanism of the oxygen reduction reaction using a rotating disc electrode setup. The focus was put on noble-metal free catalysts. The results showed that the reaction pathway of the investigated catalysts is pH-dependent indicating different active species at different pH-values. The third topic addressed the expansion of the used salts for the ionothermal approach towards hydrated calcium and magnesium chloride. It was shown that hydrated salt phases allowed the introduction of a secondary templating effect which was connected to the coexistence of liquid and solid salt phases. The method enabled the synthesis of fibrous NDCs with SSAs of up to 2780 m2 g-1 and very large TPV of 3.86 cm3 g-1. Moreover, the concept of active site implementation by a facile low-temperature metalation employing the obtained NDCs as solid ligands could be shown for the first time in the context of ORR. Overall, the thesis may pave the way towards highly porous carbon with tailor-made porosity materials prepared by an inexpensive and sustainable pathway, which can be applied in energy related field thereby supporting the needed expansion of the renewable energy sector. N2 - Alternative Konzepte für Energiespeicherung und –umwandlung müssen entwickelt, optimiert und praktisch angewendet werden, um den Traum einer erdölunabhängigen Energiewirtschaft zu realisieren. Poröse Kohlenstoffmaterialien spielen eine bedeutende Rolle in vielen energierelevanten Anwendungen. Speziell die porösen Eigenschaften des Kohlenstoffs, wie die spezifische Oberfläche (engl. specific surface area: SSA), das totale Porenvolumen (engl. total pore volume: TPV) und die Porengrößenverteilung, sind von großer Bedeutung für eine Maximierung der Leistung in der Endanwendung. Die vorliegende Arbeit konzentrierte sich auf den Einsatz und die Weiterentwicklung der ionothermalen Karbonisierung ausgehend von biomassebasierten Präkursoren, um eine nachhaltige Synthese hochporöser Kohlenstoffe mit einstellbarer Porosität zu ermöglichen. In der ionothermalen Synthese fungieren Salzschmelzen simultan als Lösungsmittel und Porogen während der Karbonisierung. Als Salzphase werden hierbei häufig eutektische Zinkchloridhaltige binäre Salzmischungen verwendet. In der vorliegenden Arbeit wurde im ersten Schritt die Variation der molaren Zusammensetzung der binären Salzphase als neue Methode eingeführt, um eine kontinuierliche Veränderung der Porosität des synthetisierten Kohlenstoffs zu bewirken. Diese Methode erlaubte die Synthese von Glukose-basierten Kohlenstoffen mit einstellbarer SSA zwischen ~ 900 und ~ 2100 m2 g-1. Des Weiteren wurde die Nukleinbase Adenin als Präkursor verwendet, wodurch eine Stickstoffdotierung des finalen Kohlenstoffmaterials erreicht wurde. Die damit einhergehende Veränderung der chemischen Eigenschaften des Materials führt zu neuen Anwendungsbereichen. Stickstoffdotierte Kohlen (engl. nitrogen doped carbons: NDCs) können beispielsweise die Sauerstoffreduktion katalysieren, welche auf der Kathodenseite der Brennstoffzelle abläuft. Das entwickelte Verfahren zur Einstellung der Porosität erlaubte einerseits die Synthese von Adenin-basierten NDCs mit beeindruckenden SSAs von bis zu 2900 m2 g-1 und extrem hohen TPVs von bis zu 5,19 cm3 g-1. Andererseits konnte der Einfluss der Porosität auf die Sauerstoffreduktion direkt untersucht und infolge dessen die Porosität der NDCs für diese Anwendung optimiert werden. Im zweiten Schritt wurde ein neues Verfahren entwickelt, um mittels der rotierenden Scheibenelektrode den noch nicht geklärten Mechanismus der Sauerstoffreduktion zu untersuchen, vor allem in Bezug auf edelmetallfreie Katalysatoren. Die Ergebnisse zeigten, dass der Reaktionsverlauf der Sauerstoffreduktion pH-Wert abhängig ist. Diese deutet auf verschiedene aktive Spezies in Abhängigkeit des pH-Werts hin. Im dritten Schritt wurde der gezielte Einsatz von hydrierten Salzen (Magnesium- und Calciumchlorid) als Salzphase für die ionothermale Synthese untersucht. Es konnte gezeigt werden, dass Hydrate einen sekundären Templatierungseffekt erlauben, was anhand der Koexistenz von flüssigen und festen Salzphasen erklärt werden konnte. Hierdurch konnten faserartige NDC-Materialien mit SSAs von bis zu 2780 m2 g-1 und TPVs von bis zu 3,86 cm3 g-1 synthetisiert werden. Des Weiteren wurde anhand dieser NDC-Materialien erfolgreich gezeigt, dass es möglich ist sauerstoffreduktionsaktive Spezies durch einfache Metallierung mit Eisenionen bei niedrigen Temperaturen einzuführen. Zusammenfassend konnte die vorliegende Arbeit die kostengünstige und nachhaltige Synthese hochporöser Materialien mit einstellbarer Porosität zeigen, welche in energierelevanten Bereichen eingesetzt werden können. Hierdurch kann die notwendige Erweiterung des Sektors der erneuerbaren Energien unterstützt werden. KW - porous materials KW - nitrogen doped carbons KW - ORR KW - oxygen reduction reaction KW - electrocatalysis KW - poröse Materialien KW - stickstoffdotierte Kohlenstoffe KW - ORR KW - Sauerstoff Reduktion KW - Elektrokatalyse KW - ionothermal synthesis KW - ionothermale Synthese Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-101323 ER - TY - THES A1 - Kossmann, Janina T1 - Controlled condensation to functional materials – synergetic effect of nitrogen content and pore structure T1 - Kontrollierte Kondensation zu funktionellen Materialien - Synergetische Wirkung von Stickstoffgehalt und Porenstruktur N2 - The development and optimization of carbonaceous materials is of great interest for several applications including gas sorption, electrochemical storage and conversion, or heterogeneous catalysis. In this thesis, the exploration and optimization of nitrogen containing carbonaceous materials by direct condensation of smart chosen, molecular precursors will be presented. As suggested with the concept of noble carbons, the choice of a stable, nitrogen-containing precursor will lead to an even more stable, nitrogen doped carbonaceous material with a controlled structure and electronic properties. Molecules fulfilling this requirement are for example nucleobases. The direct condensation of nucleobases leads to highly nitrogen containing carbonaceous materials without any further post or pretreatment. By using salt melt templating, pore structure adjustment is possible without the use of hazardous or toxic reagents and the template can be reused. Using these simple tools, the synergetic effect of the pore structure and nitrogen content of the materials can be explored. Within this thesis, the influence of the condensation parameters will be correlated to the structure and performance of the materials. First, the influence of the condensation temperature to the porosity and nitrogen content of guanine will be discussed and the exploration of highly CO2 selective structural pores in C1N1 materials will be shown. Further tuning the pore structure of the materials by salt melt templating will be then explored, the potential of the prepared materials as heterogeneous catalysts and their basic catalytic strength will be correlated to their nitrogen content and pore morphology. A similar approach is used to explore the water sorption behavior of uric acid derived carbonaceous materials as potential sorbents for heat transformation applications. Changes in maximum water uptake and hydrophilicity of the prepared materials will be correlated to the nitrogen content and pore architecture. Due to the high thermal stability, porosity, and nitrogen content of ionic liquid derived nitrogen doped carbonaceous materials, a simple impregnation and calcination route can be conducted to obtain copper nano cluster decorated nitrogen-doped carbonaceous materials. The activity as catalyst for the oxygen reduction reaction of the obtained materials will be shown and structure performance relations are discussed. In conclusion, the versatility of nitrogen doped carbonaceous materials with a nitrogen to carbon ratio of up to one will be shown. The possibility to tune the pore structure as well as the nitrogen content by using a simple procedure including salt melt templating as well as the use of molecular precursors and their effect on the performance will be discussed. N2 - Die Entwicklung und Optimierung von kohlenstoffhaltigen Materialien ist von großem Interesse in vielen Anwendungsbereichen, darunter Gassorption, elektrochemische Speicherung und Umwandlung von Energie und in der heterogenen Katalyse. In dieser Arbeit wird die Erforschung und Optimierung von stickstoff‑ und kohlenstoffhaltigen Materialien durch direkte Kondensation ausgewählter, molekularer Ausgangsstoffe vorgestellt. Entsprechend dem Konzept der edlen Kohlenstoffe (noble carbons), führt die Kondensation eines stabilen, stickstoffhaltigen Ausgangsstoffes zu einem noch stabileren, stickstoffdotierten kohlenstoffhaltigen Material mit kontrollierter Struktur und elektronischen Eigenschaften. Moleküle, die diese Anforderung erfüllen, sind zum Beispiel Nukleobasen. Die direkte Kondensation von Nukleobasen führt ohne weitere Nach- oder Vorbehandlungen zu kohlenstoffhaltigen Materialien mit einem sehr hohen Stickstoffanteil. Durch die Verwendung des Salzschmelze-Template Verfahrens ist eine Anpassung der Porenstruktur ohne Verwendung gefährlicher oder toxischer Reagenzien möglich und die Templates können außerdem wiederverwendet werden. Mit diesen einfachen Werkzeugen kann der synergetische Effekt der Porenstruktur und des Stickstoffgehalts der Materialien erforscht werden. Im Rahmen dieser Arbeit wird der Einfluss der Kondensationsparameter auf die Struktur und die Leistung der Materialien in Beziehung gesetzt. Zunächst wird der Einfluss der Kondensationstemperatur auf die Porosität und den Stickstoffgehalt von Guanin erörtert und die Erforschung von CO2-selektiven strukturellen Poren in C1N1-Materialien aufgezeigt. Das Potenzial der hergestellten Materialien als heterogener Katalysator und ihre katalytische Wirkung werden mit ihrem Stickstoffgehalt und ihrer Porenstruktur korreliert. Ein ähnlicher Ansatz wird verwendet, um das Wassersorptionsverhalten von aus Harnsäure hergestellten kohlenstoffhaltigen Materialien als potenzielle Sorptionsmittel für Wärmetransformationsanwendungen zu untersuchen. Die maximale Wasseraufnahme und Hydrophilie der hergestellten Materialien werden mit dem Stickstoffgehalt und der Porenarchitektur korreliert. Aufgrund der hohen thermischen Stabilität, der Porosität und des Stickstoffgehalts der mit ionischer Flüssigkeit hergestellten stickstoffdotierten kohlenstoffhaltigen Materialien können diese des Weiteren als Träger für Metalle dienen. Durch einfache Imprägnierung und Kalzinierung werden Kupfer‑Nanocluster dekorierte stickstoffhaltige Kohlenstoffmaterialen hergestellt und als Katalysator für die in Brennstoffzellen stattfindende Sauerstoff-Reduktionsreaktion genutzt. Zusammenfassend wird die Vielseitigkeit von stickstoffdotierten kohlenstoffhaltigen Materialien mit einem Stickstoff-Kohlenstoff-Verhältnis von bis zu eins aufgezeigt. Es wird die Möglichkeit gezeigt, die Porenstruktur und den Stickstoffgehalt in einem einfachen Verfahren, einschließlich Salzschmelze‑Templating und die Verwendung von molekularen Ausgangsstoffen, zu beeinflussen und somit für gezielte Anwendungen zu variieren. KW - CO2 capture KW - nitrogen containing carbonaceous materials KW - C1N1 KW - heat transformation application KW - oxygen reduction reaction KW - salt melt templating KW - C1N1 KW - CO2-Abscheidung KW - Wärmetransformationsanwendungen KW - Stickstoff‑ und Kohlenstoffhaltige Materialien KW - Sauerstoff-Reduktionsreaktion KW - Salzschmelze-Templating Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-536935 ER -