TY - THES A1 - Eren, Enis Oğuzhan T1 - Covalent anode materials for high-energy sodium-ion batteries T1 - Kovalente Anodenmaterialien für hoch-energetische Natrium-Ionen-Batterien N2 - The reliance on fossil fuels has resulted in an abnormal increase in the concentration of greenhouse gases, contributing to the global climate crisis. In response, a rapid transition to renewable energy sources has begun, particularly lithium-ion batteries, playing a crucial role in the green energy transformation. However, concerns regarding the availability and geopolitical implications of lithium have prompted the exploration of alternative rechargeable battery systems, such as sodium-ion batteries. Sodium is significantly abundant and more homogeneously distributed in the crust and seawater, making it easier and less expensive to extract than lithium. However, because of the mysterious nature of its components, sodium-ion batteries are not yet sufficiently advanced to take the place of lithium-ion batteries. Specifically, sodium exhibits a more metallic character and a larger ionic radius, resulting in a different ion storage mechanism utilized in lithium-ion batteries. Innovations in synthetic methods, post-treatments, and interface engineering clearly demonstrate the significance of developing high-performance carbonaceous anode materials for sodium-ion batteries. The objective of this dissertation is to present a systematic approach for fabricating efficient, high-performance, and sustainable carbonaceous anode materials for sodium-ion batteries. This will involve a comprehensive investigation of different chemical environments and post-modification techniques as well. This dissertation focuses on three main objectives. Firstly, it explores the significance of post-synthetic methods in designing interfaces. A conformal carbon nitride coating is deposited through chemical vapor deposition on a carbon electrode as an artificial solid-electrolyte interface layer, resulting in improved electrochemical performance. The interaction between the carbon nitride artificial interface and the carbon electrode enhances initial Coulombic efficiency, rate performance, and total capacity. Secondly, a novel process for preparing sulfur-rich carbon as a high-performing anode material for sodium-ion batteries is presented. The method involves using an oligo-3,4-ethylenedioxythiophene precursor for high sulfur content hard carbon anode to investigate the sulfur heteroatom effect on the electrochemical sodium storage mechanism. By optimizing the condensation temperature, a significant transformation in the materials’ nanostructure is achieved, leading to improved electrochemical performance. The use of in-operando small-angle X-ray scattering provides valuable insights into the interaction between micropores and sodium ions during the electrochemical processes. Lastly, the development of high-capacity hard carbon, derived from 5-hydroxymethyl furfural, is examined. This carbon material exhibits exceptional performance at both low and high current densities. Extensive electrochemical and physicochemical characterizations shed light on the sodium storage mechanism concerning the chemical environment, establishing the material’s stability and potential applications in sodium-ion batteries. N2 - Die Abhängigkeit von fossilen Brennstoffen hat zu einem abnormalen Anstieg von Treibhausgasen in der Atmosphäre geführt, was zur globalen Klimakrise beiträgt. Als Reaktion darauf hat eine rasche Umstellung auf erneuerbare Energiequellen begonnen, insbesondere Lithium-Ionen-Batterien, die eine entscheidende Rolle in der grünen Energiewende spielen. Bedenken hinsichtlich der Verfügbarkeit und geopolitischen Implikationen von Lithium haben jedoch die Erforschung alternativer wiederaufladbarer Batteriesysteme wie Natrium-Ionen-Batterien angeregt. Natrium ist in der Erdkruste und im Meerwasser deutlich häufiger und gleichmäßiger verteilt, was seine Extraktion im Vergleich zu Lithium einfacher und kostengünstiger macht. Aufgrund der geheimnisvollen Natur ihrer Komponenten sind Natrium-Ionen-Batterien derzeit noch nicht ausreichend fortgeschritten, um Lithium-Ionen-Batterien zu ersetzen. Insbesondere weist Natrium einen stärker metallischen Charakter und einen größeren Ionenradius auf, was zu einem anderen Ionen-Speichermechanismus führt, der in Lithium-Ionen-Batterien verwendet wird. Innovationen in synthetischen, post-synthetischen Methoden und Schnittstellentechnik zeigen deutlich die Bedeutung der Entwicklung hochleistungsfähiger kohlenstoffhaltiger Anodenmaterialien für Natrium-Ionen-Batterien auf. Das Ziel dieser Dissertation ist es, einen systematischen Ansatz zur Herstellung effizienter, leistungsstarker und nachhaltiger kohlenstoffhaltiger Anodenmaterialien für Natrium-Ionen-Batterien zu untersuchen. Diese Dissertation konzentriert sich auf drei Hauptziele. Erstens untersucht sie die Bedeutung von post-synthetischen Methoden bei der Gestaltung von Schnittstellen. Eine konforme Kohlenstoffnitrid-Beschichtung wird durch chemische Gasphasenabscheidung auf einer Kohlenstoffelektrode als künstliche Festelektrolytschnittstelle abgeschieden, was zu einer verbesserten elektrochemischen Leistung führt. Die Wechselwirkung zwischen der künstlichen Kohlenstoffnitrid-Schnittstelle und der Kohlenstoffelektrode trägt zu einer verbesserten anfänglichen kolumbischen Effizienz, Leistung bei hohen Raten und Gesamtkapazität bei. Zweitens wird ein neuartiger Prozess zur Herstellung von schwefelreichem Kohlenstoff als hochleistungsfähiges Anodenmaterial für Natrium-Ionen-Batterien vorgestellt. Die Methode verwendet einen Oligo-3,4-ethylendioxythiophen-Vorläufer für eine harte Kohlenstoffanode mit hohem Schwefelgehalt, um den Effekt des Schwefelheteroatoms auf den elektrochemischen Natriumspeichermechanismus zu untersuchen. Durch Optimierung der Kondensationstemperatur wird eine bedeutende Transformation in der Nanostruktur des Materials erreicht, was zu einer verbesserten elektrochemischen Leistung führt. Der Einsatz von in-operando-Röntgenkleinwinkelstreuung liefert wertvolle Erkenntnisse über die Wechselwirkung zwischen Mikroporen und Natriumionen während der elektrochemischen Prozesse. Letzendlich wird die Entwicklung einer hochkapazitiven harten Kohlenstoffanode, die aus 5-Hydroxymethylfurfural gewonnen wird, untersucht. Dieses Kohlenstoffmaterial zeigt eine außergewöhnliche Leistung sowohl bei niedrigen als auch bei hohen Stromdichten. KW - sodium-ion battery KW - sulfur KW - carbon KW - CN KW - anode KW - in-operando SAXS KW - Kohlenstoffnitrid (CN) KW - Anode KW - Kohlenstoff KW - in-operando SAXS KW - Natrium-Ionen-Batterie KW - Schwefel Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-622585 ER - TY - THES A1 - Schutjajew, Konstantin T1 - Electrochemical sodium storage in non-graphitizing carbons - insights into mechanisms and synthetic approaches towards high-energy density materials T1 - Elektrochemische Natriumspeicherung in nicht-graphitisierbaren Kohlenstoffen - Untersuchungen zu Mechanismen und synthetische Ansätze für die Darstellung von Materialien mit hohen Energiedichten N2 - To achieve a sustainable energy economy, it is necessary to turn back on the combustion of fossil fuels as a means of energy production and switch to renewable sources. However, their temporal availability does not match societal consumption needs, meaning that renewably generated energy must be stored in its main generation times and allocated during peak consumption periods. Electrochemical energy storage (EES) in general is well suited due to its infrastructural independence and scalability. The lithium ion battery (LIB) takes a special place, among EES systems due to its energy density and efficiency, but the scarcity and uneven geological occurrence of minerals and ores vital for many cell components, and hence the high and fluctuating costs will decelerate its further distribution. The sodium ion battery (SIB) is a promising successor to LIB technology, as the fundamental setup and cell chemistry is similar in the two systems. Yet, the most widespread negative electrode material in LIBs, graphite, cannot be used in SIBs, as it cannot store sufficient amounts of sodium at reasonable potentials. Hence, another carbon allotrope, non-graphitizing or hard carbon (HC) is used in SIBs. This material consists of turbostratically disordered, curved graphene layers, forming regions of graphitic stacking and zones of deviating layers, so-called internal or closed pores. The structural features of HC have a substantial impact of the charge-potential curve exhibited by the carbon when it is used as the negative electrode in an SIB. At defects and edges an adsorption-like mechanism of sodium storage is prevalent, causing a sloping voltage curve, ill-suited for the practical application in SIBs, whereas a constant voltage plateau of relatively high capacities is found immediately after the sloping region, which recent research attributed to the deposition of quasimetallic sodium into the closed pores of HC. Literature on the general mechanism of sodium storage in HCs and especially the role of the closed pore is abundant, but the influence of the pore geometry and chemical nature of the HC on the low-potential sodium deposition is yet in an early stage. Therefore, the scope of this thesis is to investigate these relationships using suitable synthetic and characterization methods. Materials of precisely known morphology, porosity, and chemical structure are prepared in clear distinction to commonly obtained ones and their impact on the sodium storage characteristics is observed. Electrochemical impedance spectroscopy in combination with distribution of relaxation times analysis is further established as a technique to study the sodium storage process, in addition to classical direct current techniques, and an equivalent circuit model is proposed to qualitatively describe the HC sodiation mechanism, based on the recorded data. The obtained knowledge is used to develop a method for the preparation of closed porous and non-porous materials from open porous ones, proving not only the necessity of closed pores for efficient sodium storage, but also providing a method for effective pore closure and hence the increase of the sodium storage capacity and efficiency of carbon materials. The insights obtained and methods developed within this work hence not only contribute to the better understanding of the sodium storage mechanism in carbon materials of SIBs, but can also serve as guidance for the design of efficient electrode materials. N2 - Eine nachhaltige Energiewirtschaft kann nur durch die Abkehr von fossilen Brennstoffen als Energiequellen und den ausschließlichen Einsatz erneuerbarer Quellen für die Energieerzeugung erreicht werden. Da diese jedoch naturgemäß nur diskontinuierlich zur Verfügung stehen und sich die tageszeitliche Verfügbarkeit kaum mit dem Bedarf deckt, muss erneuerbar gewonnene Energie zwischengespeichert werden. Dies kann mittels elektrochemischer Energiespeicher geschehen, wobei sich die Lithium-Ionen-Batterie (LIB) aufgrund ihrer hohen Energiedichte und Effizienz besonders dafür eignet. Da jedoch Ressourcen, welche für entscheidende Zellkomponenten der LIB benötigt werden, knapper werden und oft in geopolitisch komplizierten Regionen vorkommen, muss auch dafür eine Alternative gefunden werden. Die Natrium-Ionen-Batterie (NIB) bietet sich als Nachfolger für LIBs an, da sich die Zellchemie der beiden Systeme ähnelt und somit Kenntnisse direkt aus der LIB-Forschung übernommen werden können. Es erweist sich allerdings als problematisch, dass das kommerziell wichtigste negative Elektrodenmaterial in LIBs, Graphit, nicht für die Anwendung in NIBs eignet und daher eine andere Kohlenstoffmodifikation, sogenannter nicht-graphitisierbarer Kohlenstoff, oder aus dem Englischen hard carbon (HC), verwendet werden muss. HC ist durch eine besondere Art der Fehlordnung geprägt und besteht im Wesentlichen aus Regionen, in denen die Kohlenstoffschichten parallel zueinander verlaufen und aus Regionen, in denen die Schichten innere Hohlräume, sogenannte geschlossene Poren bilden. Die Lade-Entladekurve von HCs ist geprägt von diesen Strukturmerkmalen, sodass sie in einen linear-abflachenden, aus dem Englischen sloping Bereich, und einen Plateaubereich unterteilt werden kann. Die Speicherung im für Energieanwendungen relevanteren Plateaubereich erfolgt durch Abscheidung quasimetallischer Natriumstrukturen in eingangs erwähnten geschlossenen Poren, bei geringen, konstanten Spannungen, wie zahlreiche Forschungsarbeiten unter Berufung auf verschiedene Strukturcharakterisierungsmethoden � uberzeugend nahelegen. Jedoch ist über den Einfluss der Größe und Form der geschlossenen Poren sowie derer chemischer Eigenschaften auf die Natriumspeicherung nur wenig bekannt. Eben diese Fragestellung soll in der vorliegenden Arbeit behandelt werden. Durch die Herstellung von Materialien mit genau definierter und bekannter Morphologie, Porenstruktur sowie chemischer Beschaffenheit wird die Bedeutung dieser Merkmale für die Natriumabscheidung bei geringen Potentialen beleuchtet. Mittels elektrochemischer Impedanzspektroskopie wird desweiteren der Natriumspeichermechanismus detailliert untersucht und die Kinetik der reversiblen Natriumspeicherung mit der der irreversiblen Metallabscheidung verglichen, wobei eine bemerkenswerte Ähnlichkeit der beiden Prozesse zu beobachten ist. Abschließend ist die gezielte Herstellung geschlossenporiger Materialien aus offenporigen Vorläufermaterialien gelungen, welche es nicht nur ermöglicht, geschlossen- und offenporige Materialien ansonsten gleicher Porenstruktur zu vergleichen und die Notwendigkeit geschlossener Poren nachzuweisen, sondern auch die Speicherkapazität und Effizienz der Elektrodenmaterialien zu erhöhen. Insgesamt tragen die im Rahmen der vorliegenden Dissertation gewonnenen Erkenntisse nicht nur zum tiefergehenden Verständnis des Natriumspeichermechanismus in HCs bei, sondern es werden auch synthetische und analytische Methoden vorgestellt, die der weiteren Forschung auf diesem Gebiet dienen werden. KW - sodium-ion batteries KW - energy storage KW - carbon KW - Natrium-Ionen-Akkumulator KW - Energiespeicher KW - Kohlenstoff Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-541894 ER - TY - THES A1 - Kubo, Shiori T1 - Nanostructured carbohydrate-derived carbonaceous materials T1 - Nanostrukturierte kohlenstoffbasierte Materialien aus Kohlenhydraten N2 - Nanoporous carbon materials are widely used in industry as adsorbents or catalyst supports, whilst becoming increasingly critical to the developing fields of energy storage / generation or separation technologies. In this thesis, the combined use of carbohydrate hydrothermal carbonisation (HTC) and templating strategies is demonstrated as an efficient route to nanostructured carbonaceous materials. HTC is an aqueous-phase, low-temperature (e.g. 130 – 200 °C) carbonisation, which proceeds via dehydration / poly-condensation of carbon precursors (e.g. carbohydrates and their derivatives), allowing facile access to highly functional carbonaceous materials. Whilst possessing utile, modifiable surface functional groups (e.g. -OH and -C=O-containing moieties), materials synthesised via HTC typically present limited accessible surface area or pore volume. Therefore, this thesis focuses on the development of fabrication routes to HTC materials which present enhanced textural properties and well-defined porosity. In the first discussed synthesis, a combined hard templating / HTC route was investigated using a range of sacrificial inorganic templates (e.g. mesoporous silica beads and macroporous alumina membranes (AAO)). Via pore impregnation of mesoporous silica beads with a biomass-derived carbon source (e.g. 2-furaldehyde) and subsequent HTC at 180 oC, an inorganic / carbonaceous hybrid material was produced. Removal of the template component by acid etching revealed the replication of the silica into mesoporous carbonaceous spheres (particle size ~ 5 μm), representing the inverse morphological structure of the original inorganic body. Surface analysis (e.g. FTIR) indicated a material decorated with hydrophilic (oxygenated) functional groups. Further thermal treatment at increasingly elevated temperatures (e.g. at 350, 550, 750 oC) under inert atmosphere allowed manipulation of functionalities from polar hydrophilic to increasingly non-polar / hydrophobic structural motifs (e.g. extension of the aromatic / pseudo-graphitic nature), thus demonstrating a process capable of simultaneous control of nanostructure and surface / bulk chemistry. As an extension of this approach, carbonaceous tubular nanostructures with controlled surface functionality were synthesised by the nanocasting of uniform, linear macropores of an AAO template (~ 200 nm). In this example, material porosity could be controlled, showing increasingly microporous tube wall features as post carbonisation temperature increased. Additionally, by taking advantage of modifiable surface groups, the introduction of useful polymeric moieties (i.e. grafting of thermoresponsive poly(N-isopropylacrylamide)) was also demonstrated, potentially enabling application of these interesting tubular structures in the fields of biotechnology (e.g. enzyme immobilization) and medicine (e.g. as drug micro-containers). Complimentary to these hard templating routes, a combined HTC / soft templating route for the direct synthesis of ordered porous carbonaceous materials was also developed. After selection of structural directing agents and optimisation of synthesis composition, the F127 triblock copolymer (i.e. ethylene oxide (EO)106 propylene oxide (PO)70 ethylene oxide (EO)106) / D-Fructose system was extensively studied. D-Fructose was found to be a useful carbon precursor as the HTC process could be performed at 130 oC, thus allowing access to stable micellular phase. Thermolytic template removal from the synthesised ordered copolymer / carbon composite yielded functional cuboctahedron single crystalline-like particles (~ 5 μm) with well ordered pore structure of a near perfect cubic Im3m symmetry. N2 sorption analysis revealed a predominantly microporous carbonaceous material (i.e. Type I isotherm, SBET = 257 m2g-1, 79 % microporosity) possessing a pore size of ca. 0.9 nm. The addition of a simple pore swelling additive (e.g. trimethylbenzene (TMB)) to this system was found to direct pore size into the mesopore size domain (i.e. Type IV isotherm, SBET = 116 m2g-1, 60 % mesoporosity) generating pore size of ca. 4 nm. It is proposed that in both cases as HTC proceeds to generate a polyfuran-like network, the organised block copolymer micellular phase is essentially “templated”, either via hydrogen bonding between hydrophilic poly(EO) moiety and the carbohydrate or via hydrophobic interaction between hydrophobic poly(PO) moiety and forming polyfuran-like network, whilst the additive TMB presumably interact with poly(PO) moieties, thus swelling the hydrophobic region expanding the micelle template size further into the mesopore range. N2 - Nanoporöse kohlenstoffbasierte Materialien sind in der Industrie als Adsorbentien und Katalysatorträger weit verbreitet und gewinnen im aufstrebenden Bereich der Energiespeicherung/erzeugung und für Trennverfahren an wachsender Bedeutung. In der vorliegenden Arbeit wird gezeigt, dass die Kombination aus hydrothermaler Karbonisierung von Zuckern (HTC) mit Templatierungsstrategien einen effizienten Weg zu nanostrukturierten kohlenstoffbasierten Materialien darstellt. HTC ist ein in Wasser und bei niedrigen Temperaturen (130 - 200 °C) durchgeführter Karbonisierungsprozess, bei dem Zucker und deren Derivate einen einfachen Zugang zu hochfunktionalisierten Materialien erlauben. Obwohl diese sauerstoffhaltige Funktionalitäten auf der Oberfläche besitzen, an welche andere chemische Gruppen gebunden werden könnten, was die Verwendung für Trennverfahren und in der verzögerten Wirkstofffreisetzung ermöglichen sollte, ist die mittels HTC hergestellte Kohle für solche Anwendungen nicht porös genug. Das Ziel dieser Arbeit ist es daher, Methoden zu entwickeln, um wohldefinierte Poren in solchen Materialien zu erzeugen. Hierbei führte unter anderem der Einsatz von anorganischen formgebenden mesoporösen Silikapartikeln und makroporösen Aluminiumoxid-Membranen zum Erfolg. Durch Zugabe einer Kohlenstoffquelle (z. B. 2-Furfural), HTC und anschließender Entfernung des Templats konnten poröse kohlenstoffbasierte Partikel und röhrenförmige Nanostrukturen hergestellt werden. Gleichzeitig konnte durch eine zusätzliche Nachbehandlung bei hoher Temperatur (350-750 °C) auch noch die Oberflächenfunktionalität hin zu aromatischen Systemen verschoben werden. Analog zur Formgebung durch anorganische Template konnte mit sog. Soft-Templaten, z. B. PEO-PPO-PEO Blockcopolymeren, eine funktionelle poröse Struktur induziert werden. Hierbei machte man sich die Ausbildung geordneter Mizellen mit der Kohlenstoffquelle D-Fructose zu Nutze. Das erhaltene Material wies hochgeordnete Mikroporen mit einem Durchmesser von ca. 0,9 nm auf. Dieser konnte desweiteren durch Zugabe von Quell-Additiven (z. B. Trimethylbenzol) auf 4 nm in den mesoporösen Bereich vergrößert werden. Zusammenfassend lässt sich sagen, dass beide untersuchten Synthesewege nanostrukturierte kohlenstoffbasierte Materialien mit vielfältiger Oberflächenchemie liefern, und das mittels einer bei relativ niedriger Temperatur in Wasser ablaufenden Reaktion und einer billigen, nachhaltigen Kohlenstoffquelle. Die so hergestellten Produkte eröffnen vielseitige Anwendungsmöglichkeiten, z. B. zur Molekültrennung in der Flüssigchromatographie, in der Energiespeicherung als Anodenmaterial in Li-Ionen Akkus oder Superkondensatoren, oder als Trägermaterial für die gezielte Pharmakotherapie. KW - Nanostruktur KW - Kohlenstoff KW - Kohlenhydrate KW - Templating KW - hydrothermale Carbonisierung KW - Nanostructure KW - Carbon KW - Carbohydrate KW - Templating KW - Hydrothermal carbonisation Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-53157 ER -