TY - JOUR A1 - Weber, Nancy A1 - Tiersch, Brigitte A1 - Unterlass, Miriam M. A1 - Heilig, Anneliese A1 - Tauer, Klaus T1 - "Schizomorphic" Emulsion Copolymerization Particles JF - Macromolecular rapid communications N2 - Cryo-electron microscopy, atomic force microscopy, and light microscopy investigations provide experimental evidence that amphiphilic emulsion copolymerization particles change their morphology in dependence on concentration. The shape of the particles is spherical at solids content above 1%, but it changes to rod-like, ring-like, and web-like structures at lower concentrations. In addition, the shape and morphology of these particles at low concentrations are not fixed but very flexible and vary with time between spheres, flexible pearlnecklace structures, and stretched rods. KW - amphiphilic particles KW - emulsion polymerization KW - morphology Y1 - 2011 U6 - https://doi.org/10.1002/marc.201100491 SN - 1022-1336 VL - 32 IS - 23 SP - 1925 EP - 1929 PB - Wiley-Blackwell CY - Malden ER - TY - GEN A1 - Junginger, Mathias A1 - Kübel, Christian A1 - Schacher, Felix H. A1 - Müller, Axel H. E. A1 - Taubert, Andreas T1 - Crystal structure and chemical composition of biomimetic calcium phosphate nanofibers N2 - Calcium phosphate nanofibers with a diameter of only a few nanometers and a cotton-ball-like aggregate morphology have been reported several times in the literature. Although fiber formation seems reproducible in a variety of conditions, the crystal structure and chemical composition of the fibers have been elusive. Using scanning transmission electron microscopy, low dose electron (nano)diffraction, energy-dispersive X-ray spectroscopy, and energy-filtered transmission electron microscopy, we have assigned crystal structures and chemical compositions to the fibers. Moreover, we demonstrate that the mineralization process yields true polymer/calcium phosphate hybrid materials where the block copolymer template is closely associated with the calcium phosphate. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 244 KW - air-water-interface KW - polycationic monolayer KW - mineralization beneath KW - block-copolymers KW - aqueous-solution KW - morphology KW - orthophosphates KW - biomaterials KW - nucleation KW - clusters Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-95176 SP - 11301 EP - 11308 ER - TY - JOUR A1 - Schöne, Anne-Christin A1 - Schulz, Burkhard A1 - Richau, Klaus A1 - Kratz, Karl A1 - Lendlein, Andreas T1 - Characterization of Langmuir films prepared from copolyesterurethanes based on oligo(omega-pentadecalactone) and oligo(epsilon-caprolactone)segments JF - Macromolecular chemistry and physics N2 - A series of multiblock copolymers (PDLCL) synthesized from oligo(omega-pentadecalactone) diol (OPDL) and oligo(epsilon-caprolactone) diol (OCL), which are linked by 2,2(4), 4-trimethyl-hexamethylene diisocyanate (TMDI), is investigated by the Langmuir monolayer technique at the air-water interface. Brewster angle microscopy (BAM) and spectroscopic ellipsometry are employed to characterize the polymer film morphologies in situ. PDLCL containing >= 40 wt% OCL segments form homogeneous Langmuir monofilms after spreading. The film elasticity modulus decreases with increasing amounts of OPDL segments in the copolymer. In contrast, the OCL-free polyesterurethane OPDL-TMDI cannot be spread to monomolecular films on the water surface properly, and movable slabs are observed by BAM even at low surface pressures. The results of the in situ morphological characterization clearly show that essential information concerning the reliability of Langmuir monolayer degradation (LMD) experiments cannot be obtained from the evaluation of the pi-A isotherms only. Consequently, in situ morphological characterization turns out to be indispensable for characterization of Langmuir layers before LMD experiments. KW - brewster angle microscopy KW - ellipsometry KW - Langmuir layers KW - morphology KW - polyesterurethanes Y1 - 2014 U6 - https://doi.org/10.1002/macp.201400377 SN - 1022-1352 SN - 1521-3935 VL - 215 IS - 24 SP - 2437 EP - 2445 PB - Wiley-VCH CY - Weinheim ER - TY - GEN A1 - Wischke, Christian A1 - Lendlein, Andreas T1 - Functional nanocarriers by miniaturization of polymeric materials T2 - Nanomedicine KW - function KW - microscale KW - morphology KW - nanoscale KW - polymer Y1 - 2016 U6 - https://doi.org/10.2217/nnm.16.45 SN - 1743-5889 SN - 1748-6963 VL - 11 SP - 1507 EP - 1509 PB - Future Medicine CY - London ER - TY - JOUR A1 - Izraylit, Victor A1 - Gould, Oliver E. C. A1 - Kratz, Karl A1 - Lendlein, Andreas T1 - Investigating the phase-morphology of PLLA-PCL multiblock copolymer/PDLA blends cross-linked using stereocomplexation JF - MRS advances N2 - The macroscale function of multicomponent polymeric materials is dependent on their phase-morphology. Here, we investigate the morphological structure of a multiblock copolymer consisting of poly(L-lactide) and poly(epsilon-caprolactone) segments (PLLA-PCL), physically cross-linked by stereocomplexation with a low molecular weight poly(D-lactide) oligomer (PDLA). The effects of blend composition and PLLA-PCL molecular structure on the morphology are elucidated by AFM, TEM and SAXS. We identify the formation of a lattice pattern, composed of PLA domains within a PCL matrix, with an average domain spacing d0 = 12 - 19 nm. The size of the PLA domains were found to be proportional to the block length of the PCL segment of the copolymer and inversely proportional to the PDLA content of the blend. Changing the PLLA-PCL / PDLA ratio caused a shift in the melt transition Tm attributed to the PLA stereocomplex crystallites, indicating partial amorphous phase dilution of the PLA and PCL components within the semicrystalline material. By elucidating the phase structure and thermal character of multifunctional PLLA-PCL / PDLA blends, we illustrate how composition affects the internal structure and thermal properties of multicomponent polymeric materials. This study should facilitate the more effective incorporation of a variety of polymeric structural units capable of stimuli responsive phase transitions, where an understanding the phase-morphology of each component will enable the production of multifunctional soft-actuators with enhanced performance. KW - polymer KW - blend KW - nanostructure KW - morphology Y1 - 2020 U6 - https://doi.org/10.1557/adv.2019.465 SN - 2059-8521 VL - 5 IS - 14-15 SP - 699 EP - 707 PB - Cambridge Univ. Press CY - New York ER - TY - JOUR A1 - Qiu, Liang A1 - Zhang, Haoran A1 - Bick, Thomas A1 - Martin, Johannes A1 - Wendler, Petra A1 - Böker, Alexander A1 - Glebe, Ulrich A1 - Xing, Chengfen T1 - Construction of highly ordered glyco-inside nano-assemblies through RAFT dispersion polymerization of galactose-decorated monomer JF - Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition N2 - Glyco-assemblies derived from amphiphilic sugar-decorated block copolymers (ASBCs) have emerged prominently due to their wide application, for example, in biomedicine and as drug carriers. However, to efficiently construct these glyco-assemblies is still a challenge. Herein, we report an efficient technology for the synthesis of glyco-inside nano-assemblies by utilizing RAFT polymerization of a galactose-decorated methacrylate for polymerization-induced self-assembly (PISA). Using this approach, a series of highly ordered glyco-inside nano-assemblies containing intermediate morphologies were fabricated by adjusting the length of the hydrophobic glycoblock and the polymerization solids content. A specific morphology of complex vesicles was captured during the PISA process and the formation mechanism is explained by the morphology of its precursor and intermediate. Thus, this method establishes a powerful route to fabricate glyco-assemblies with tunable morphologies and variable sizes, which is significant to enable the large-scale fabrication and wide application of glyco-assemblies. KW - galactose-decorated monomer KW - glyco-inside nano-assemblies KW - morphology KW - evolution KW - PISA KW - RAFT dispersion polymerization Y1 - 2021 U6 - https://doi.org/10.1002/anie.202015692 SN - 1433-7851 SN - 1521-3773 VL - 60 IS - 20 SP - 11098 EP - 11103 PB - Wiley-VCH CY - Weinheim ER -