TY - JOUR A1 - Kyriakos, Konstantinos A1 - Philipp, Martine A1 - Lin, Che-Hung A1 - Dyakonova, Margarita A1 - Vishnevetskaya, Natalya A1 - Grillo, Isabelle A1 - Zaccone, Alessio A1 - Miasnikova, Anna A1 - Laschewsky, Andre A1 - Müller-Buschbaum, Peter A1 - Papadakis, Christine M. T1 - Quantifying the Interactions in the Aggregation of Thermoresponsive Polymers: The Effect of Cononsolvency JF - Macromolecular rapid communications N2 - The aggregation kinetics of thermoresponsive core-shell micelles with a poly(N-isopropyl acrylamide) shell in pure water or in mixtures of water with the cosolvents methanol or ethanol at mole fractions of 5% is investigated during a temperature jump across the respective cloud point. Characteristically, these mixtures give rise to cononsolvency behavior. At the cloud point, aggregates are formed, and their growth is followed with time-resolved small-angle neutron scattering. Using the reversible association model, the interaction potential between the aggregates is determined from their growth rate in dependence on the cosolvents. The effect of the cosolvent is attributed to the interaction potential on the structured layer of hydration water around the aggregates. It is surmised that the latter is perturbed by the cosolvent and thus the residual repulsive hydration force between the aggregates is reduced. The larger the molar volume of the cosolvent, the more pronounced is the effect. This framework provides a molecular-level understanding of solvent-mediated effective interactions in polymer solutions and new opportunities for the rational control of self-assembly in complex soft matter systems. KW - colloidal aggregation KW - cononsolvency KW - interaction potential KW - polymer solutions KW - self-assembled micelles KW - thermoresponsive polymers Y1 - 2016 U6 - https://doi.org/10.1002/marc.201500583 SN - 1022-1336 SN - 1521-3927 VL - 37 SP - 420 EP - 425 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Vukicevic, Radovan A1 - Neffe, Axel T. A1 - Luetzow, Karola A1 - Pierce, Benjamin F. A1 - Lendlein, Andreas T1 - Conditional Ultrasound Sensitivity of Poly[(N-isopropylacrylamide)-co-(vinyl imidazole)] Microgels for Controlled Lipase Release JF - Macromolecular rapid communications N2 - Triggering the release of cargo from a polymer network by ultrasonication as an external, non-invasive stimulus can be an interesting concept for on-demand release. Here, it is shown that, in pH-and thermosensitive microgels, the ultrasound sensitivity of the polymer network depends on the external conditions. Crosslinked poly[(N-isopropylacrylamide)-co-(vinyl imidazole)] microgels showed a volume phase transition temperature (VPTT) of 25-50 degrees C, which increases with decreasing pH. Above the VPTT the polymer chains are collapsed, while below VPTT they are extended. Only in the case of maximum observed swelling, where the polymer chains are expanded, the microgels are mechanically fragmented through ultrasonication. In contrast, when the polymer chains are partially collapsed it is not possible to manipulate the microgels by ultrasound. Additionally, the ultrasound-induced on-demand release of wheat germ lipase from the microgels could be demonstrated successfully. The principle of conditional ultrasound sensitivity is likely to be general and can be used for selection of matrix-cargo combinations. KW - ultrasound KW - polymers KW - microgels KW - lipase release KW - controlled release KW - thermoresponsive polymers KW - biomaterials Y1 - 2015 U6 - https://doi.org/10.1002/marc.201500311 SN - 1022-1336 SN - 1521-3927 VL - 36 IS - 21 SP - 1891 EP - 1896 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Adelsberger, Joseph A1 - Metwalli, Ezzeldin A1 - Diethert, Alexander A1 - Grillo, Isabelle A1 - Bivigou Koumba, Achille Mayelle A1 - Laschewsky, André A1 - Müller-Buschbaum, Peter A1 - Papadakis, Christine M. T1 - Kinetics of collapse transition and cluster formation in a thermoresponsive micellar solution of P(S-b-NIPAM-b-S) induced by a temperature jump JF - Macromolecular rapid communications N2 - Structural changes at the intra- as well as intermicellar level were induced by the LCST-type collapse transition of poly(N-isopropyl acrylamide) in ABA triblock copolymer micelles in water. The distinct process kinetics was followed in situ and in real-time using time-resolved small-angle neutron scattering (SANS), while a micellar solution of a triblock copolymer, consisting of two short deuterated polystyrene endblocks and a long thermoresponsive poly(N-isopropyl acrylamide) middle block, was heated rapidly above its cloud point. A very fast collapse together with a multistep aggregation behavior is observed. The findings of the transition occurring at several size and time levels may have implications for the design and application of such thermoresponsive self-assembled systems. KW - polymer physics KW - thermoresponsive polymers KW - small-angle neutron scattering KW - time-resolved measurements Y1 - 2012 U6 - https://doi.org/10.1002/marc.201100631 SN - 1022-1336 VL - 33 IS - 3 SP - 254 EP - 259 PB - Wiley-Blackwell CY - Malden ER -