TY - THES A1 - Hochrein, Lena T1 - Development of a new DNA-assembly method and its application for the establishment of a red light-sensing regulation system T1 - Entwicklung einer neuartigen DNS-Assemblierungsmethode und ihre Anwendung für die Etablierung eines Rotlicht-responsiven Regulierungssystems N2 - In der hier vorgelegten Doktorarbeit wurde eine Strategie zur schnellen, einfachen und zuverlässigen Assemblierung von DNS-Fragmenten, genannt AssemblX, entwickelt. Diese kann genutzt werden, um komplexe DNS-Konstrukte, wie beispielsweise komplette Biosynthesewege, aufzubauen. Dies dient der Produktion von technisch oder medizinisch relevanten Produkten in biotechnologisch nutzbaren Organismen. Die Vorteile der Klonierungsstrategie liegen in der Schnelligkeit der Klonierung, der Flexibilität bezüglich des Wirtsorganismus, sowie der hohen Effektivität, die durch gezielte Optimierung erreicht wurde. Die entwickelte Technik erlaubt die nahtlose Assemblierung von Genfragmenten und bietet eine Komplettlösung von der Software-gestützten Planung bis zur Fertigstellung von DNS-Konstrukten, welche die Größe von Mini-Chromosomen erreichen können. Mit Hilfe der oben beschriebenen AssemblX Strategie wurde eine optogenetische Plattform für die Bäckerhefe Saccharomyces cerevisiae etabliert. Diese besteht aus einem Rotlicht-sensitiven Photorezeptor und seinem interagierenden Partner aus Arabidopsis thaliana, welche in lichtabhängiger Weise miteinander agieren. Diese Interaktion wurde genutzt, um zwei Rotlicht-aktivierbare Proteine zu erstellen: Einen Transkriptionsfaktor, der nach Applikation eines Lichtpulses die Produktion eines frei wählbaren Proteins stimuliert, sowie eine Cre Rekombinase, die ebenfalls nach Bestrahlung mit einer bestimmten Wellenlänge die zufallsbasierte Reorganisation bestimmter DNS-Konstrukte ermöglicht. Zusammenfassend wurden damit drei Werkzeuge für die synthetische Biologie etabliert. Diese ermöglichen den Aufbau von komplexen Biosynthesewegen, deren Licht-abhängige Regulation, sowie die zufallsbasierte Rekombination zu Optimierungszwecken. N2 - With Saccharomyces cerevisiae being a commonly used host organism for synthetic biology and biotechnology approaches, the work presented here aims at the development of novel tools to improve and facilitate pathway engineering and heterologous protein production in yeast. Initially, the multi-part assembly strategy AssemblX was established, which allows the fast, user-friendly and highly efficient construction of up to 25 units, e.g. genes, into a single DNA construct. To speed up complex assembly projects, starting from sub-gene fragments and resulting in mini-chromosome sized constructs, AssemblX follows a level-based approach: Level 0 stands for the assembly of genes from multiple sub-gene fragments; Level 1 for the combination of up to five Level 0 units into one Level 1 module; Level 2 for linkages of up to five Level 1 modules into one Level 2 module. This way, all Level 0 and subsequently all Level 1 assemblies can be carried out simultaneously. Individually planned, overlap-based Level 0 assemblies enable scar-free and sequence-independent assemblies of transcriptional units, without limitations in fragment number, size or content. Level 1 and Level 2 assemblies, which are carried out via predefined, computationally optimized homology regions, follow a standardized, highly efficient and PCR-free scheme. AssemblX follows a virtually sequence-independent scheme with no need for time-consuming domestication of assembly parts. To minimize the risk of human error and to facilitate the planning of assembly projects, especially for individually designed Level 0 constructs, the whole AssemblX process is accompanied by a user-friendly webtool. This webtool provides the user with an easy-to-use operating surface and returns a bench-protocol including all cloning steps. The efficiency of the assembly process is further boosted through the implementation of different features, e.g. ccdB counter selection and marker switching/reconstitution. Due to the design of homology regions and vector backbones the user can flexibly choose between various overlap-based cloning methods, enabling cost-efficient assemblies which can be carried out either in E. coli or yeast. Protein production in yeast is additionally supported by a characterized library of 40 constitutive promoters, fully integrated into the AssemblX toolbox. This provides the user with a starting point for protein balancing and pathway engineering. Furthermore, the final assembly cassette can be subcloned into any vector, giving the user the flexibility to transfer the individual construct into any host organism different from yeast. As successful production of heterologous compounds generally requires a precise adjustment of protein levels or even manipulation of the host genome to e.g. inhibit unwanted feedback regulations, the optogenetic transcriptional regulation tool PhiReX was designed. In recent years, light induction was reported to enable easy, reversible, fast, non-toxic and nearly gratuitous regulation, thereby providing manifold advantages compared to conventional chemical inducers. The optogenetic interface established in this study is based on the photoreceptor PhyB and its interacting protein PIF3. Both proteins, derived from Arabidopsis thaliana, dimerize in a red/far-red light-responsive manner. This interaction depends on a chromophore, naturally not available in yeast. By fusing split proteins to both components of the optical dimerizer, active enzymes can be reconstituted in a light-dependent manner. For the construction of the red/far-red light sensing gene expression system PhiReX, a customizable synTALE-DNA binding domain was fused to PhyB, and a VP64 activation domain to PIF3. The synTALE-based transcription factor allows programmable targeting of any desired promoter region. The first, plasmid-based PhiReX version mediates chromophore- and light-dependent expression of the reporter gene, but required further optimization regarding its robustness, basal expression and maximum output. This was achieved by genome-integration of the optical regulator pair, by cloning the reporter cassette on a high-copy plasmid and by additional molecular modifications of the fusion proteins regarding their cellular localization. In combination, this results in a robust and efficient activation of cells over an incubation time of at least 48 h. Finally, to boost the potential of PhiReX for biotechnological applications, yeast was engineered to produce the chromophore. This overcomes the need to supply the expensive and photo-labile compound exogenously. The expression output mediated through PhiReX is comparable to the strong constitutive yeast TDH3 promoter and - in the experiments described here - clearly exceeds the commonly used galactose inducible GAL1 promoter. The fast-developing field of synthetic biology enables the construction of complete synthetic genomes. The upcoming Synthetic Yeast Sc2.0 Project is currently underway to redesign and synthesize the S. cerevisiae genome. As a prerequisite for the so-called “SCRaMbLE” system, all Sc2.0 chromosomes incorporate symmetrical target sites for Cre recombinase (loxPsym sites), enabling rearrangement of the yeast genome after induction of Cre with the toxic hormonal substance beta-estradiol. To overcome the safety concern linked to the use of beta-estradiol, a red light-inducible Cre recombinase, dubbed L-SCRaMbLE, was established in this study. L-SCRaMbLE was demonstrated to allow a time- and chromophore-dependent recombination with reliable off-states when applied to a plasmid containing four genes of the beta-carotene pathway, each flanked with loxPsym sites. When directly compared to the original induction system, L-SCRaMbLE generates a larger variety of recombination events and lower basal activity. In conclusion, L-SCRaMbLE provides a promising and powerful tool for genome rearrangement. The three tools developed in this study provide so far unmatched possibilities to tackle complex synthetic biology projects in yeast by addressing three different stages: fast and reliable biosynthetic pathway assembly; highly specific, orthogonal gene regulation; and tightly controlled synthetic evolution of loxPsym-containing DNA constructs. KW - synthetic biology KW - pathway engineering KW - DNA assembly KW - transcription factor KW - Cre recombinase KW - optogenetics KW - synthetische Biologie KW - Optimierung von Biosynthesewegen KW - DNS Assemblierung KW - Transkriptionsfaktor KW - Cre Rekombinase KW - Optogenetik Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-404441 ER - TY - THES A1 - Loßow, Kristina T1 - Erzeugung und Charakterisierung von Mausmodellen mit lichtsensitivem Geschmackssystem zur Aufklärung der neuronalen Geschmackskodierung T1 - Generation and characterization of transgenic lines of mice to elucidate neuralnetworks engaged in processing of gustatory information N2 - Die Wahrnehmung von Geschmacksempfindungen beruht auf dem Zusammenspiel verschiedener Sinneseindrücke wie Schmecken, Riechen und Tasten. Diese Komplexität der gustatorischen Wahrnehmung erschwert die Beantwortung der Frage wie Geschmacksinformationen vom Mund ins Gehirn weitergeleitet, prozessiert und kodiert werden. Die Analysen zur neuronalen Prozessierung von Geschmacksinformationen erfolgten zumeist mit Bitterstimuli am Mausmodell. Zwar ist bekannt, dass das Genom der Maus für 35 funktionelle Bitterrezeptoren kodiert, jedoch war nur für zwei unter ihnen ein Ligand ermittelt worden. Um eine bessere Grundlage für tierexperimentelle Arbeiten zu schaffen, wurden 16 der 35 Bitterrezeptoren der Maus heterolog in HEK293T-Zellen exprimiert und in Calcium-Imaging-Experimenten funktionell charakterisiert. Die Daten belegen, dass das Funktionsspektrum der Bitterrezeptoren der Maus im Vergleich zum Menschen enger ist und widerlegen damit die Aussage, dass humane und murine orthologe Rezeptoren durch das gleiche Ligandenspektrum angesprochen werden. Die Interpretation von tierexperimentellen Daten und die Übertragbarkeit auf den Menschen werden folglich nicht nur durch die Komplexität des Geschmacks, sondern auch durch Speziesunterschiede verkompliziert. Die Komplexität des Geschmacks beruht u. a. auf der Tatsache, dass Geschmacksstoffe selten isoliert auftreten und daher eine Vielzahl an Informationen kodiert werden muss. Um solche geschmacksstoffassoziierten Stimuli in der Analyse der gustatorischen Kommunikationsbahnen auszuschließen, sollten Opsine, die durch Licht spezifischer Wellenlänge angeregt werden können, für die selektive Ersetzung von Geschmacksrezeptoren genutzt werden. Um die Funktionalität dieser angestrebten Knockout-Knockin-Modelle zu evaluieren, die eine Kopplung von Opsinen mit dem geschmacksspezifischen G-Protein Gustducin voraussetzte, wurden Oozyten vom Krallenfrosch Xenopus laevis mit dem Zwei-Elektroden-Spannungsklemm-Verfahren hinsichtlich dieser Interaktion analysiert. Der positiven Bewertung dieser Kopplung folgte die Erzeugung von drei Mauslinien, die in der kodierenden Region eines spezifischen Geschmacksrezeptors (Tas1r1, Tas1r2, Tas2r114) Photorezeptoren exprimierten. Durch RT-PCR-, In-situ-Hybridisierungs- und immunhistochemische Experimente konnte der erfolgreiche Knockout der Rezeptorgene und der Knockin der Opsine belegt werden. Der Nachweis der Funktionalität der Opsine im gustatorischen System wird Gegenstand zukünftiger Analysen sein. Bei erfolgreichem Beleg der Lichtempfindlichkeit von Geschmacksrezeptorzellen dieser Mausmodelle wäre ein System geschaffen, dass es ermöglichen würde, gustatorische neuronale Netzwerke und Hirnareale zu identifizieren, die auf einen reinen geschmacks- und qualitätsspezifischen Stimulus zurückzuführen wären. N2 - Taste impression is based on the interaction of taste, smell and touch. To evaluate the nutritious content of food mammals possess five distinct taste qualities: sweet, bitter, umami (taste of amino acids), sour and salty. For bitter, sweet, and umami compounds taste signaling is initiated by binding of tastants to G protein-coupled receptors. The interactions of taste stimuli, usually watersoluble chemicals, with their cognate receptors lead to the activation of the G protein gustducin, which, in turn, initiates a signal resulting in the activation of gustatory afferents. However, details of gustatory signal transmission and processing as well as neural coding are only incompletely understood. This is partly due to the property of some tastants to elicit several sensations simultaneously, unspecific effects caused by the temperature, viscosity, osmolarity, and pH of the solvents, as well as by mechanical stimulation of the tongue during stimulus application. The analysis of gustatory processing of taste information are mainly based on mouse models after stimulation with bitter taste stimuli. Even though it is known that the mouse genome codes for 35 bitter taste receptor genes only few of them had been analysed so far. For better understanding and interpretation of animal experiments 16 mouse bitter receptors had been analysed by Calcium Imaging experiments with HEK293T cells. The data reveal that mouse bitter taste receptors are more narrow tuned than human bitter taste receptors, proving that the ligand spectra of murine and human orthologous receptors are not complient. In order to avoid the disturbing effects of solvents and stimulus application on the analysis of gustatory information transfer and processing, I employ an optogenetical approach to address this problem. For this purpose I generated three strains of gene-targeted mice in which the coding regions of the genes for the umami receptor subunit Tas1r1, the sweet receptor subunit Tas1r2 or the bitter taste receptor Tas2r114 have been replaced by the coding sequences of different opsins (photoreceptors of visual transduction) that are sensitive to light of various wavelengths. In these animals I should be able to activate sweet, bitter, or umami signalling by light avoiding any solvent effects. In initial experiments of this project I demonstrated that the various visual opsins indeed functionally couple to taste signal transduction pathway in oocyte expression system, generating basic knowledge and foundation for the generation of the gene-targeted animals. The knockout-knockin strategies have been successfully realized in the case of all three mouse models, revealed by RT-PCR, in situ hybridization and immunohistochemical analysis of taste papillae. All data confirm that the particular taste receptors have been replaced by the different opsins in taste cells. Further analysis concerning the functional consequences of opsin knockin and taste receptor knockout are part of prospective work. KW - Geschmack KW - G-Protein-gekoppelte Rezeptoren KW - Bitterrezeptoren KW - Optogenetik KW - taste KW - G protein-coupled receptors KW - bitter taste receptors KW - optogenetic Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-58059 ER -