TY - THES A1 - Freiberg, Alexander T1 - Das "Leucine-Rich Repeat" im Invasionsprotein Internalin B : Stabilität und Faltung eines Solenoidproteins T1 - The leucine-rich repeat from internalin B : stability and folding of a solenoid protein N2 - Für das Verständnis der Strukturbildung bei Proteinen ist es wichtig, allgemein geltende Prinzipien der Stabilität und Faltung zu verstehen. Bisher wurde viel Arbeit in die Erörterung von Gesetzmäßigkeiten zu den Faltungseigenschaften von globulären Proteinen investiert. Die große Proteinklasse der solenoiden Proteine, zu denen z. B. Leucine-Rich Repeat- (LRR-) oder Ankyrin-Proteine gehören, wurde dahingegen noch wenig untersucht. Die Proteine dieser Klasse sind durch einen stapelförmigen Aufbau von sich wiederholenden typischen Sequenzeinheiten gekennzeichnet, was in der Ausbildung einer elongierten Tertiärstruktur resultiert. In der vorliegenden Arbeit sollte versucht werden, die Stabilität und Faltung eines LRR-Proteins mittels verschiedener biophysikalischer Methoden zu charakterisieren. Als Untersuchungsobjekt diente die für die Infektion ausreichende zentrale LRR-Domäne des Invasionsproteins Internalin B (InlB241) des Bakteriums Listeria monocytogenes. Des weiteren sollten die Integrität und die Stabilitäts- und Faltungseigenschaften der sogenannten Internalin-Domäne (InlB321) untersucht werden. Hierbei handelt es sich um die bei allen Mitgliedern der Internalinfamilie vorkommende Domäne, welche aus einer direkten Fusion des C-terminalen Endes der LRR-Domäne mit einer Immunglobulin (Ig)-ähnlichen Domäne besteht. Von beiden Konstrukten konnte eine vollständige thermodynamische Charakterisierung, mit Hilfe von chemisch- bzw. thermisch-induzierten Faltungs- und Entfaltungsübergängen durchgeführt werden. Sowohl InlB241 als auch InlB321 zeigen einen reversiblen und kooperativen Verlauf der chemisch-induzierten Gleichgewichtsübergänge, was die Anwendung eines Zweizustandsmodells zur Beschreibung der Daten erlaubte. Die zusätzliche Ig-ähnliche Domäne im InlB321 resultierte im Vergleich zum InlB241 in einer Erhöhung der freien Enthalpie der Entfaltung (8.8 kcal/mol im Vergleich zu 4.7 kcal/mol). Diese Stabilitätszunahme äußerte sich sowohl in einer Verschiebung des Übergangsmittelpunktes zu höheren Guanidiniumchlorid-Konzentrationen als auch in einer Erhöhung der Kooperativität des Gleichgewichtsübergangs (9.7 kcal/mol/M im Vergleich zu 7.1 kcal/mol/M). Diese Beobachtungen zeigen dass die einzelnen Sequenzeinheiten der LRR-Domäne nicht unabhängig voneinander falten und dass die Ig-ähnliche Domäne, obwohl sie nicht direkt mit dem Wirtszellrezeptor während der Invasion interagiert, eine kritische Rolle für die in vivo Stabilität des Internalin B spielt. Des weiteren spiegelt die Kooperativität des Übergangs die Integrität der Internalin-Domäne wieder und deutet darauf hin, dass bei beiden Proteinen keine Intermediate vorliegen. Kinetische Messungen über Tryptophanfluoreszenz und Fern-UV Circulardichroismus deuteten auf die Existenz eines relativ stabilen Intermediates auf dem Faltungsweg der LRR-Domäne hin. Faltungskinetiken aus einem in pH 2 denaturierten Zustand zeigten ein reversibles Verhalten und verliefen über ein Intermediat. Eine Erhöhung der Salzkonzentration des sauer-denaturierten Proteins führte zu einer Kompaktierung der entfalteten Struktur und resultierte im Übergang zu einem alternativ gefalteten Zustand. Bei der Internalin-Domäne deuteten kinetische Messungen des Fluoreszenz- und Fern-UV Circulardichroismus-Signals während der Entfaltung möglicherweise auf die Präsenz von zwei Prozessen hin. Der erste langsame Entfaltungsprozess kurz nach dem Übergangsmittelpunkt zeigte eine starke Abhängigkeit von der Temperatur, während der zweite schnellere Prozess der Entfaltung stärker von der Guanidiniumchlorid-Konzentration abhing. Renaturierungskinetiken zeigten das Auftreten von mindestens einem Faltungsintermediat. Kinetische Daten aus Doppelsprungexperimenten lieferten für die Erklärung der langsamen Faltungsphase zunächst keinen Hinweis auf dass Vorliegen einer Prolinisomerisierungsreaktion. Die vollständige Amplitude während der Renaturierung konnte nicht detektiert werden, weswegen von einer zweiten schnellen Phase im Submillisekundenbereich ausgegangen werden kann. Die Ergebnisse der Faltungskinetiken zeigen, dass die InlB-Konstrukte als Modelle für die Untersuchung der Faltung von Solenoidproteinen verwendet werden können. N2 -

To understand the processes of protein structure formation, it is necessary to investigate protein stability and protein folding kinetics. The focus of many folding studies has been directed at small, globular proteins. The larger class of solenoid proteins, including leucine-rich repeat (LRR) and ankyrin proteins, has not been extensively investigated. These proteins contain tandem repeat motifs, and their tertiary structure consists of a regular linear array of modules that stack to form non-globular elongated or supercoiled structures. In the present work, the folding and stability of the central LRR domain of the invasion protein internalin B (InlB241) from the bacterium Listeria monocytogenes was characterized using different biophysical techniques. In addition, the integrity, stability and folding behavior of the so-called internalin-domain (InlB321) was investigated. In this single domain, which is found in all members of the internalin-family, an immunoglobulin (Ig)-like domain is directly fused to the C-terminal end of the LRR domain.

A complete thermodynamic characterization of the stability of both constructs was performed, using chemical- and temperature-induced folding and unfolding transitions. The reversible and cooperative equilibrium transition of InlB241 and InlB321 allowed the use of a two-state model for the description of the data points. The additional Ig-like domain present in InlB321 resulted in an increase of the unfolding free energy (8.8 kcal/mol compared to 4.7 kcal/mol). This resulted both, from a shift of the transition midpoint to higher denaturant concentration, and from an increase in the m-value, the denaturant dependence of the unfolding free energy (9.7 kcal/mol/M compared to 7.1 kcal/mol/M). These observations suggest that the unravelling of the individual structural repeats in the LRR region is a cooperative process and that the tight fusion with the Ig-like domain leads to a dramatically increased stability in vivo without interfering with the functionality of the protein. In addition, the cooperativity of the equilibrium transition reflects the integrity of the internalin-domain, and suggests that both InlB fragments unfold without significantly populated equilibrium intermediates.

Kinetic measurements with tryptophan fluorescence and far-UV circular dichroism are indicative for the existence of a relative stable intermediate on the folding pathway of the LRR domain. Refolding kinetics from an acid-denatured state showed a reversible behavior and passes off an intermediate. An increase in the salt concentration of the acid-denatured protein results in a transition of the unfolded structure to a compact and alternatively folded state. Unfolding kinetics of the internalin-domain measured by fluorescence and far-UV circular dichroism are indicative for the possible presence of two processes. The first slow unfolding process after the transition midpoint showed a strong dependence on temperature, whereas the second and faster unfolding process showed a stronger dependence on the denaturant concentration. Renaturation kinetics indicated the existence of at least one folding intermediate. Preliminary double-mixing experiments revealed no evidence for a rate-limiting proline isomerization reaction. It was not possible to detect the complete amplitude of the renaturation reaction, suggesting existence of a second faster phase occuring in the submillisecond range.

The results on folding kinetics prove the InlB constructs to be suitable models for the investigation of solenoid protein folding by techniques of high structural resolution. KW - Proteinfaltung KW - thermodynamische Stabilität KW - Leucine-Rich Repeat KW - Internalin B KW - Zweizustandsmodell KW - leucine-rich repeat KW - internalin B KW - thermodynamic stability KW - protein folding KW - two-state model Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-2532 ER -