TY - THES
A1 - Busaman, Saofee
T1 - Hyperequational theory for partial algebras
T1 - Hyperequationale Theorie für partielle Algebren
N2 - Our work goes in two directions. At first we want to transfer definitions, concepts and results of the theory of hyperidentities and solid varieties from the total to the partial case. (1) We prove that the operators chi^A_RNF and chi^E_RNF are only monotone and additive and we show that the sets of all fixed points of these operators are characterized only by three instead of four equivalent conditions for the case of closure operators. (2) We prove that V is n − SF-solid iff clone^SF V is free with respect to itself, freely generated by the independent set {[fi(x_1, . . . , x_n)]Id^SF_n V | i \in I}. (3) We prove that if V is n-fluid and ~V |P(V ) =~V −iso |P(V ) then V is kunsolid for k >= n (where P(V ) is the set of all V -proper hypersubstitutions of type \tau ). (4) We prove that a strong M-hyperquasi-equational theory is characterized by four equivalent conditions. The second direction of our work is to follow ideas which are typical for the partial case. (1) We characterize all minimal partial clones which are strongly solidifyable. (2)We define the operator Chi^A_Ph where Ph is a monoid of regular partial hypersubstitutions.Using this concept, we define the concept of a Phyp_R(\tau )-solid strong regular variety of partial algebras and we prove that a PHyp_R(\tau )-solid strong regular variety satisfies four equivalent conditions.
KW - partial algebras
KW - hyperequational theory
Y1 - 2006
U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-12048
ER -