TY - JOUR A1 - Tomas, Sara A1 - Frijia, Gianluca A1 - Boemelburg, Esther A1 - Zamagni, Jessica A1 - Perrin, Christine A1 - Mutti, Maria T1 - Evidence for seagrass meadows and their response to paleoenvironmental changes in the early Eocene (Jafnayn Formation, Wadi Bani Khalid, N Oman) JF - Sedimentary geology : international journal of applied and regional sedimentology N2 - The recognition and understanding of vegetated habitats in the fossil record are of crucial importance in order to investigate paleoecological responses and indirectly infer climate and sea-level changes. However, the low preservation potential of plants and macroalgae hampers a direct identification of these environments in the geological past. Here we present sedimentological and paleontological evidences as tool to identify the presence of different seagrass-vegetated environments in the shallow marine settings of the lower Eocene jafnayn platform of Oman and their responses to paleoenvironmental changes. The studied lower Eocene deposits consist of well bedded, nodular pacicstones dominated by encrusting acervulinid and alveolinid foraminifera passing upward to an alternance of packstones with echinoids and quartz grains and grainstones rich in Orbitolites, smaller miliolid foraminifera and quartz grains. The presence of seagrass is inferred by the occurrence of encrusting acervulinids and soritid Orbitolites, as well as by their test morphologies together with further sedimentological criteria. The clear shift observed in the faunal assemblages and sedimentary features may be related to a major reorganization of the carbonate system passing from a carbonate platform to a ramp-like platform with increased terrigenous sedimentation. Heterotroph tubular acervulinids and oligotroph alveolinids of the carbonate platform were replaced upward by more heterotroph organisms such as large, discoidal Orbitolites and smaller miliolids, most likely due to enhanced nutrient levels which would have led to a change of phytal substrate, from cylindrical-leaf dominated grasses into flat-leafed ones. (C) 2016 Elsevier B.V. All rights reserved. KW - Epiphytic foraminifera KW - Seagrasses KW - Paleoenvironment KW - Early Eocene KW - Oman Y1 - 2016 U6 - https://doi.org/10.1016/j.sedgeo.2016.05.016 SN - 0037-0738 SN - 1879-0968 VL - 341 SP - 189 EP - 202 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Zamagni, Jessica A1 - Mutti, Maria A1 - Kosir, Adrijan T1 - The evolution of mid paleocene-early eocene coral communities how to survive during rapid global warming JF - Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences N2 - Today, diverse communities of zooxanthellate corals thrive, but do not build reef, under a wide range of environmental conditions. In these settings they inhabit natural bottom communities, sometimes forming patch-reefs, coral carpets and knobs. Episodes in the fossil record, characterized by limited coral-reef development but widespread occurrence of coral-bearing carbonates, may represent the fossil analogs of these non-reef building, zooxanthellate coral communities. If so, the study of these corals could have valuable implications for paleoenvironmental reconstructions. Here we focus on the evolution of early Paleogene corals as a fossil example of coral communities mainly composed by zooxanthellate corals (or likely zooxanthellate), commonly occurring within carbonate biofacies and with relatively high diversity but with a limited bioconstructional potential as testified by the reduced record of coral reefs. We correlate changes of bioconstructional potential and community compositions of these fossil corals with the main ecological/environmental conditions at that time. The early Paleogene greenhouse climate was characterized by relatively short pulses of warming with the most prominent occurring at the Paleocene-Eocene boundary (PETM event), associated with high weathering rates, nutrient fluxes, and pCO(2) levels. A synthesis of coral occurrences integrated with our data from the Adriatic Carbonate Platform (SW Slovenia) and the Minervois region (SW France), provides evidence for temporal changes in the reef-building capacity of corals associated with a shift in community composition toward forms adapted to tolerate deteriorating sea-water conditions. During the middle Paleocene coral-algal patch reefs and barrier reefs occurred from shallow-water settings, locally with reef-crest structures. A first shift can be traced from middle Paleocene to late Paleocene, with small coral-algal patch reefs and coral-bearing mounds development in shallow to intermediate water depths. In these mounds corals were highly subordinated as bioconstructors to other groups tolerant to higher levels of trophic resources (calcareous red algae, encrusting foraminifera, microbes, and sponges). A second shift occurred at the onset of the early Eocene with a further reduction of coral framework-building capacity. These coral communities mainly formed knobs in shallow-water, turbid settings associated with abundant foraminiferal deposits. We suggest that environmental conditions other than high temperature determined a combination of interrelated stressors that limited the coral-reef construction. A continuous enhancement of sediment load/nutrients combined with geochemical changes of ocean waters likely displaced corals as the main bioconstructors during the late Paleocene-early Eocene times. Nonetheless, these conditions did not affect the capacity of some corals to colonize the substrate, maintain biodiversity, and act as locally important carbonate-sediment producers, suggesting broad environmental tolerance limits of various species of corals. The implications of this study include clues as to how both ancient and modern zooxanthellate corals could respond to changing climate. KW - Zooxanthellate corals KW - Early Paleogene KW - PETM KW - Nutrients KW - Ecological competition KW - Ocean acidification Y1 - 2012 U6 - https://doi.org/10.1016/j.palaeo.2011.12.010 SN - 0031-0182 VL - 317 IS - 2 SP - 48 EP - 65 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Zamagni, Jessica A1 - Mutti, Maria A1 - Ballato, Paolo A1 - Kosir, Adrijan T1 - The Paleocene-Eocene thermal maximum (PETM) in shallow-marine successions of the Adriatic carbonate platform (SW Slovenia) JF - Geological Society of America bulletin N2 - The Paleocene-Eocene thermal maximum represents one of the most rapid and extreme warming events in the Cenozoic. Shallow-water stratigraphic sections from the Adriatic carbonate platform offer a rare opportunity to learn about the nature of Paleocene-Eocene thermal maximum and the effects on shallow-water ecosystems. We use carbon and oxygen isotope stratigraphy, in conjunction with detailed larger benthic foraminiferal biostratigraphy, to establish a high-resolution paleoclimatic record for the Paleocene-Eocene thermal maximum. A prominent negative excursion in delta C-13 curves of bulk-rock (similar to 1 parts per thousand-3 parts per thousand), matrix (similar to 4 parts per thousand), and foraminifera (similar to 6 parts per thousand) is interpreted as the carbon isotope excursion during the Paleocene-Eocene thermal maximum. The strongly C-13-depleted delta(1)d(3)C record of our shallow-marine carbonates compared to open-marine records could result from organic matter oxidation, suggesting intensified weathering, runoff, and organic matter flux. The Ilerdian larger benthie foraminiferal turnover is documented in detail based on high-resolution correlation with the carbon isotopic excursion. The turnover is described as a two-step process, with the first step (early Ilerdian) marked by a rapid diversification of small alveolinids and nummulitids with weak adult dimorphism, possibly as adaptations to fluctuating Paleocene-Eocene thermal maximum nutrient levels, and a second step (middle Ilerdian) characterized by a further specific diversification, increase of shell size, and well-developed adult dimorphism. Within an evolutionary scheme controlled by long-term biological processes, we argue that high seawater temperatures could have stimulated the early Ilerdian rapid specific diversification. Together, these data help elucidate the effects of global warming and associated feedbacks in shallow-water ecosystems, and by inference, could serve as an assessment analog for future changes. Y1 - 2012 U6 - https://doi.org/10.1130/B30553.1 SN - 0016-7606 VL - 124 IS - 7-8 SP - 1071 EP - 1086 PB - American Institute of Physics CY - Boulder ER - TY - JOUR A1 - Zamagni, Jessica A1 - KoÜir, Adrijan A1 - Mutti, Maria T1 - The first microbialite-coral mounds in the Cenozoic (Uppermost Paleocene) from the Northern Tethys (Slovenia) : environmentally-triggered phase shifts preceding the PETM? N2 - Upper Thanetian microbialite-coral mounds from the Adriatic Carbonate Platform (SW Slovenia) are described herein for the first time, representing an important case study of extensively microbially-cemented boundstones in the Early Paleogene. The mounds are constructed primarily by microbialites associated to small-sized coral colonies, forming metric bioconstructions in a mid-ramp setting. Detailed macroscopic and microscopic studies show that microbes are the major framework builders, playing a prominent role in the stabilization and growth of the mounds, with corals being the second most important component. Microbial carbonates represent up to 70% of the mounds, forming centimetric-thick crusts alternating with coral colonies. The microbial nature of the crusts is demonstrated by their growth form and internal microfabrics, showing accretionary, binding, and encrusting growth fabrics, often with gravity-defying geometries. Thin sections and polished slabs reveal a broad range of mesofabrics, with dense, structureless micrite (leiolite), laminated crusts (stromatolites), and clotted micritic masses (thrombolites). A first layer of micro- encrusters, including leiolites and thrombolites, occurs in cryptic habitats, whereas discontinuous stromatolites encrust the upper surface of corals. A second encrustation, the major mound construction phase, follows and is dominated by thrombolites, encrusting corals and other micro-encrusters. This sequence represents the basic constructional unit horizontally and vertically interlocked, in an irregular pattern, to form the mounds. The processes, which favored the deposition of these microbial carbonates, were mainly related to in situ precipitation, with minor evidences for grain agglutination and trapping processes. Scleractinian corals comprise moderately diversified community of small (centimetric) colonial, massive, platy encrusting, and branching forms. Coral colonies are distributed uniformly throughout the mounds without developing any ecological zonation. These features indicate that coral development remained at the pioneer stage throughout the mound growth. The spatial relationships between corals and microbialites, as well as the characteristics of microbial crusts and coral colonies, indicate a strong ecological competition between corals and microbes. A model for the evolution of the trophic structures during the mound growth is proposed, with changes in the paleoecology of the main bioconstructors triggered by frequent environmental perturbations. Turbidity and nutrient pressure, interpreted here as related to frequent recurrences of wet phases during the warm, humid climate of the Uppermost Thanetian, might have promoted temporary dominance of microbes over corals, causing rapid environmentally- driven "phase shifts" in the dominant biota. Y1 - 2009 UR - http://www.sciencedirect.com/science/journal/00310182 U6 - https://doi.org/10.1016/j.palaeo.2008.12.007 SN - 0031-0182 ER -