TY - JOUR A1 - Wang, Zhenyu A1 - Fritsch, Daniel A1 - Berendts, Stefan A1 - Lerch, Martin A1 - Breternitz, Joachim A1 - Schorr, Susan T1 - Elucidation of the reaction mechanism for the synthesis of ZnGeN2 through Zn2GeO4 ammonolysis JF - Chemical science / RSC, Royal Society of Chemistry N2 - Ternary II-IV-N-2 materials have been considered as a promising class of materials that combine photovoltaic performance with earth-abundance and low toxicity. When switching from binary III-V materials to ternary II-IV-N-2 materials, further structural complexity is added to the system that may influence its optoelectronic properties. Herein, we present a systematic study of the reaction of Zn2GeO4 with NH3 that produces zinc germanium oxide nitrides, and ultimately approach stoichiometric ZnGeN2, using a combination of chemical analyses, X-ray powder diffraction and DFT calculations. Elucidating the reaction mechanism as being dominated by Zn and O extrusion at the later reaction stages, we give an insight into studying structure-property relationships in this emerging class of materials. Y1 - 2021 U6 - https://doi.org/10.1039/d1sc00328c SN - 2041-6539 VL - 12 IS - 24 SP - 8493 EP - 8500 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Franz, Alexandra A1 - Többens, Daniel M. A1 - Lehmann, Frederike A1 - Kärgell, Martin A1 - Schorr, Susan T1 - The influence of deuteration on the crystal structure of hybrid halide perovskites: a temperature-dependent neutron diffraction study of FAPbBr(3) JF - Acta crystallographica; Section B, Structural science, crystal engineering and materials N2 - This paper discusses the full structural solution of the hybrid perovskite formamidinium lead tribromide (FAPbBr(3)) and its temperature-dependent phase transitions in the range from 3 K to 300 K using neutron powder diffraction and synchrotron X-ray diffraction. Special emphasis is put on the influence of deuteration on formamidinium, its position in the unit cell and disordering in comparison to fully hydrogenated FAPbBr(3). The temperature-dependent measurements show that deuteration critically influences the crystal structures, i.e. results in partially-ordered temperature-dependent structural modifications in which two symmetry-independent molecule positions with additional dislocation of the molecular centre atom and molecular angle inclinations are present. KW - hybrid perovskite KW - FAPbBr(3) KW - deuteration KW - neutron powder diffraction KW - crystal structure Y1 - 2020 U6 - https://doi.org/10.1107/S2052520620002620 SN - 2052-5206 VL - 76 IS - 2 SP - 267 EP - 274 PB - Wiley-Blackwell CY - Oxford [u.a.] ER - TY - GEN A1 - Lehmann, Frederike A1 - Binet, Silvia A1 - Franz, Alexandra A1 - Taubert, Andreas A1 - Schorr, Susan T1 - Cation and anion substitutions in hybrid perovskites BT - solubility limits and phase stabilizing effects T2 - 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC) N2 - Organic or inorganic (A) metal (M) halide (X) perovskites (AMX(3)) are semiconductor materials setting the basis for the development of highly efficient, low-cost and multijunction solar energy conversion devices. The best efficiencies nowadays are obtained with mixed compositions containing methylammonium, formamidinium, Cs and Rb as well as iodine, bromine and chlorine as anions. The understanding of fundamental properties such as crystal structure and its effect on the band gap, as well as their phase stability is essential. In this systematic study X-ray diffraction and photoluminescense spectroscopy were applied to evaluate structural and optoelectronic properties of hybrid perovskites with mixed compositions. Y1 - 2018 SN - 978-1-5386-8529-7 U6 - https://doi.org/10.1109/PVSC.2018.8547645 SN - 2159-2330 SN - 2159-2349 SP - 1555 EP - 1558 PB - IEEE CY - New York ER - TY - JOUR A1 - Breternitz, Joachim A1 - Lehmann, Frederike A1 - Barnett, Sarah A. A1 - Nowell, Harriott A1 - Schorr, Susan T1 - Zur Rolle der Iodid-Methylammonium-Interaktion in der Ferroelektrizität in CH3NH3PbI3 JF - Angewandte Chemie N2 - Ihre außergewöhnlich hohen Konversionseffizienzen von über 20 % und die einfache Zellherstellung machen Hybridperowskite zu heißen Kandidaten für alternative Solarzellenmaterialien. CH3NH3PbI3 als Archetyp dieser Materialklasse besitzt außergewöhnliche Eigenschaften wie eine sehr effiziente Umwandlung von Solarenergie, wobei besonders Ferroelektrizität als mögliche Erklärung in den Fokus gerückt ist. Diese erfordert allerdings eine nicht-zentrosymmetrische Kristallstruktur als notwendige Voraussetzung. Wir stellen hier eine Erklärung des Symmetriebruchs in diesem Material auf kristallographischem, d. h. fernordnungs-basiertem, Wege vor. Während das Molekülkation CH3NH3+ intrinsisch polar ist, ist es extrem fehlgeordnet und kann deshalb nicht die einzige Erklärung darstellen. Es verzerrt allerdings das umgebende Kristallgitter und ruft dadurch eine Verschiebung der Iod-Atome von den zentrosymmetrischen Positionen hervor. KW - ferroelectricity KW - hybrid perovskites KW - inorganic chemistry KW - photovoltaic materials KW - structure elucidation Y1 - 2019 VL - 132 IS - 1 PB - John Wiley & Sons, Inc. CY - New Jersey ER - TY - JOUR A1 - Breternitz, Joachim A1 - Lehmann, Frederike A1 - Barnett, Sarah A. A1 - Nowell, Harriott A1 - Schorr, Susan T1 - Role of the Iodide-methylammonium interaction in the ferroelectricity of CH3NH3PbI3 JF - Angewandte Chemie - international edition N2 - Excellent conversion efficiencies of over 20% and facile cell production have placed hybrid perovskites at the forefront of novel solar cell materials, with CH3NH3PbI3 being an archetypal compound. The question why CH3NH3PbI3 has such extraordinary characteristics, particularly a very efficient power conversion from absorbed light to electrical power, is hotly debated, with ferroelectricity being a promising candidate. This does, however, require the crystal structure to be non-centrosymmetric and we herein present crystallographic evidence as to how the symmetry breaking occurs on a crystallographic and, therefore, long-range level. Although the molecular cation CH3NH3+ is intrinsically polar, it is heavily disordered and this cannot be the sole reason for the ferroelectricity. We show that it, nonetheless, plays an important role, as it distorts the neighboring iodide positions from their centrosymmetric positions. Y1 - 2019 VL - 59 IS - 1 PB - John Wiley & Sons, Inc. CY - New Jersey ER - TY - JOUR A1 - Franz, Alexandra A1 - Többens, Daniel M. A1 - Steckhan, Julia A1 - Schorr, Susan T1 - Determination of the miscibility gap in the solid solutions series of methylammonium lead iodide/chloride JF - Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials N2 - Perovskites are widely known for their enormous possibility of elemental substitution, which leads to a large variety of physical properties. Hybrid perovskites such as CH3NH3PbI3 (MAPbI(3)) and CH3NH3PbCl3 (MAPbCl(3)) are perovskites with an A([XII])B([VI)X(-)([II)(])structure, where A is an organic molecule, B is a lead(II) cation and X is a halide anion of iodine or chlorine. Whereas MAPbCl(3) crystallizes in the cubic space group Pm (3) over barm, MAPbI(3) is in the tetragonal space group I4/mcm. The substitution of I by Cl leads to an increased tolerance against humidity but is challenging or even impossible due to their large difference in ionic radii. Here, the influence of an increasing Cl content in the reaction solution on the miscibility of the solid solution members is examined systematically. Powders were synthesized by two different routes depending on the I:Cl ratio. High-resolution synchrotron X-ray data are used to establish values for the limits of the miscibility gap which are 3.1 (1.1) mol% MAPbCl(3) in MAPI(3) and 1.0 (1) mol% MAPbI(3) in MAPCl. The establishment of relations between average pseudo-cubic lattice parameters for both phases allows a determination of the degree of substitution from the observed lattice parameters. KW - powder diffraction KW - hybrid perovskites KW - miscibility gap KW - MAPbX3 Y1 - 2018 U6 - https://doi.org/10.1107/S2052520618010764 SN - 2052-5206 VL - 74 SP - 445 EP - 449 PB - International Union of Crystallography CY - Chester ER - TY - JOUR A1 - Lehmann, Frederike A1 - Franz, Alexandra A1 - Toebbens, Daniel M. A1 - Levcenco, Sergej A1 - Unold, Thomas A1 - Taubert, Andreas A1 - Schorr, Susan T1 - The phase diagram of a mixed halide (Br, I) hybrid perovskite obtained by synchrotron X-ray diffraction JF - RSC Advances N2 - By using synchrotron X-ray powder diffraction, the temperature dependent phase diagram of the hybrid perovskite tri-halide compounds, methyl ammonium lead iodide (MAPbI3, MA+ = CH3NH3+) and methyl ammonium lead bromide (MAPbBr3), as well as of their solid solutions, has been established. The existence of a large miscibility gap between 0.29 ≤ x ≤ 0.92 (±0.02) for the MAPb(I1−xBrx)3 solid solution has been proven. A systematic study of the lattice parameters for the solid solution series at room temperature revealed distinct deviations from Vegard's law. Furthermore, temperature dependent measurements showed that a strong temperature dependency of lattice parameters from the composition is present for iodine rich compositions. In contrast, the bromine rich compositions show an unusually low dependency of the phase transition temperature from the degree of substitution. Y1 - 2019 U6 - https://doi.org/10.1039/c8ra09398a SN - 2046-2069 VL - 9 IS - 20 SP - 11151 EP - 11159 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Schuck, Götz A1 - Lehmann, Frederike A1 - Ollivier, Jacques A1 - Mutka, Hannu A1 - Schorr, Susan T1 - Influence of chloride substitution on the rotational dynamics of methylammonium in MAPbI(3-x)Cl(x) perovskites JF - The journal of physical chemistry : C, Nanomaterials and interfaces N2 - Hybrid halide perovskites, MAPbI(3), MAPbI(2.94)Cl(0.0)6, and MAPbCl(3) (MA, methylammonium), were investigated using inelastic and quasielastic neutron scattering (QENS) with the aim of elucidating the impact of chloride substitution on the rotational dynamics of MA. In this context, we discuss the influence of the inelastic neutron scattering caused by low-energy phonons on QENS, resulting from the MA rotational dynamics in MAPbI(3-x)Cl(x). Through a comparative temperature-dependent QENS investigation with different energy resolutions, which allow a wide Fourier time window, we achieved a consistent description of the influence of chlorine substitution in MAPbI(3) on the MA dynamics. Our results showed that chlorine substitution in the low-temperature orthorhombic phase leads to a weakening of the hydrogen bridge bonds, since the characteristic relaxation times of C-3 rotation at 70 K in MAPbCl(3) (135 ps) and MAPbI(2.94)Cl(0.06) (485 ps) are much shorter than that in MAPbI(3) (1635 ps). For the orthorhombic phase, we obtained the activitin energies from the temperature-dependent characteristic relaxation times tau (c3). by Arrhenius fits, indicating lower values of E-a for MAPbCl(3) and MAPbI(2.94)Cl(0.06) compared to that of MAPbI(3). We also performed QENS analyses at 190 K for all three samples. Here, we observed that MAPbCI(3) shows slower MA rotational dynamics than MAPbI(3) in the disordered structure. Y1 - 2019 U6 - https://doi.org/10.1021/acs.jpcc.9b01238 SN - 1932-7447 VL - 123 IS - 18 SP - 11436 EP - 11446 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Zhang, Shanshan A1 - Hosseini, Seyed Mehrdad A1 - Gunder, Rene A1 - Petsiuk, Andrei A1 - Caprioglio, Pietro A1 - Wolff, Christian Michael A1 - Shoaee, Safa A1 - Meredith, Paul A1 - Schorr, Susan A1 - Unold, Thomas A1 - Burn, Paul L. A1 - Neher, Dieter A1 - Stolterfoht, Martin T1 - The Role of Bulk and Interface Recombination in High-Efficiency Low-Dimensional Perovskite Solar Cells JF - Advanced materials N2 - 2D Ruddlesden-Popper perovskite (RPP) solar cells have excellent environmental stability. However, the power conversion efficiency (PCE) of RPP cells remains inferior to 3D perovskite-based cells. Herein, 2D (CH3(CH2)(3)NH3)(2)(CH3NH3)(n-1)PbnI3n+1 perovskite cells with different numbers of [PbI6](4-) sheets (n = 2-4) are analyzed. Photoluminescence quantum yield (PLQY) measurements show that nonradiative open-circuit voltage (V-OC) losses outweigh radiative losses in materials with n > 2. The n = 3 and n = 4 films exhibit a higher PLQY than the standard 3D methylammonium lead iodide perovskite although this is accompanied by increased interfacial recombination at the top perovskite/C-60 interface. This tradeoff results in a similar PLQY in all devices, including the n = 2 system where the perovskite bulk dominates the recombination properties of the cell. In most cases the quasi-Fermi level splitting matches the device V-OC within 20 meV, which indicates minimal recombination losses at the metal contacts. The results show that poor charge transport rather than exciton dissociation is the primary reason for the reduction in fill factor of the RPP devices. Optimized n = 4 RPP solar cells had PCEs of 13% with significant potential for further improvements. KW - 2D perovskites KW - interface recombination KW - perovskite solar cells KW - photoluminescence KW - V-OC loss Y1 - 2019 U6 - https://doi.org/10.1002/adma.201901090 SN - 0935-9648 SN - 1521-4095 VL - 31 IS - 30 PB - Wiley-VCH CY - Weinheim ER -