TY - JOUR A1 - Jia, He A1 - Gao, Haitao A1 - Mei, Shilin A1 - Kneer, Janosch A1 - Lin, Xianzhong A1 - Ran, Qidi A1 - Wang, Fuxian A1 - Palzer, Stefan A1 - Lu, Yan T1 - Cu2O@PNIPAM core-shell microgels as novel inkjet materials for the preparation of CuO hollow porous nanocubes gas sensing layers JF - Journal of materials chemistry : C, Materials for optical and electronic devices N2 - There has been long-standing interest in developing metal oxide-based sensors with high sensitivity, selectivity, fast response and low material consumption. Here we report for the first time the utilization of Cu2O@PNIPAM core-shell microgels with a nanocube-shaped core structure for construction of novel CuO gas sensing layers. The hybrid microgels show significant improvement in colloidal stability as compared to native Cu2O nanocubes. Consequently, a homogeneous thin film of Cu2O@PNIPAM nanoparticles can be engineered in a quite low solid content (1.5 wt%) by inkjet printing of the dispersion at an optimized viscosity and surface tension. Most importantly, thermal treatment of the Cu2O@PNIPAM microgels forms porous CuO nanocubes, which show much faster response to relevant trace NO2 gases than sensors produced from bare Cu2O nanocubes. This outcome is due to the fact that the PNIPAM shell can successfully hinder the aggregation of CuO nanoparticles during pyrolysis, which enables full utilization of the sensor layers and better access of the gas to active sites. These results point out great potential of such an innovative system as gas sensors with low cost, fast response and high sensitivity. Y1 - 2018 U6 - https://doi.org/10.1039/c8tc01995a SN - 2050-7526 SN - 2050-7534 VL - 6 IS - 27 SP - 7249 EP - 7256 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Yang, Guang A1 - Hu, Rongting A1 - Ding, Hong-ming A1 - Kochovski, Zdravko A1 - Mei, Shilin A1 - Lu, Yan A1 - Ma, Yu-qiang A1 - Chen, Guosong A1 - Jiang, Ming T1 - CO2-switchable response of protein microtubules BT - behaviour and mechanism JF - Materials chemistry frontiers N2 - Recently, we proposed a small molecular inducing ligand strategy to assemble proteins into highly-ordered structures via dual non-covalent interactions, i.e. carbohydrate-protein interaction and dimerization of Rhodamine B. Using this approach, artificial protein microtubules were successfully constructed. In this study, we find that these microtubules exhibit a perfect CO2 responsiveness; assembly and disassembly of these microtubules were nicely controlled by the alternative passage of CO2 and N-2. Upon the injection of CO2, a negative net-charged SBA turns into a neutral or positive net-charged SBA, which elongated, to some extent, the effective distance between SBA and Rhodamine B, resulting in the disassociation of the Rhodamine B dimer. Further experimental and simulation results reveal that the CO2-responsive mechanism differs from that of solubility change of the previously reported CO2-responsive synthetic materials. Y1 - 2018 U6 - https://doi.org/10.1039/c8qm00245b SN - 2052-1537 VL - 2 IS - 9 SP - 1642 EP - 1646 PB - Royal Society of Chemistry CY - Cambridge ER -