TY - JOUR A1 - Foerster, Verena A1 - Asrat, Asfawossen A1 - Ramsey, Christopher Bronk A1 - Brown, Erik T. A1 - Chapot, Melissa S. A1 - Deino, Alan A1 - Düsing, Walter A1 - Grove, Matthew A1 - Hahn, Annette A1 - Junginger, Annett A1 - Kaboth-Bahr, Stefanie A1 - Lane, Christine S. A1 - Opitz, Stephan A1 - Noren, Anders A1 - Roberts, Helen M. A1 - Stockhecke, Mona A1 - Tiedemann, Ralph A1 - Vidal, Celine M. A1 - Vogelsang, Ralf A1 - Cohen, Andrew S. A1 - Lamb, Henry F. A1 - Schaebitz, Frank A1 - Trauth, Martin H. T1 - Pleistocene climate variability in eastern Africa influenced hominin evolution JF - Nature geoscience N2 - Despite more than half a century of hominin fossil discoveries in eastern Africa, the regional environmental context of hominin evolution and dispersal is not well established due to the lack of continuous palaeoenvironmental records from one of the proven habitats of early human populations, particularly for the Pleistocene epoch. Here we present a 620,000-year environmental record from Chew Bahir, southern Ethiopia, which is proximal to key fossil sites. Our record documents the potential influence of different episodes of climatic variability on hominin biological and cultural transformation. The appearance of high anatomical diversity in hominin groups coincides with long-lasting and relatively stable humid conditions from similar to 620,000 to 275,000 years bp (episodes 1-6), interrupted by several abrupt and extreme hydroclimate perturbations. A pattern of pronounced climatic cyclicity transformed habitats during episodes 7-9 (similar to 275,000-60,000 years bp), a crucial phase encompassing the gradual transition from Acheulean to Middle Stone Age technologies, the emergence of Homo sapiens in eastern Africa and key human social and cultural innovations. Those accumulative innovations plus the alignment of humid pulses between northeastern Africa and the eastern Mediterranean during high-frequency climate oscillations of episodes 10-12 (similar to 60,000-10,000 years bp) could have facilitated the global dispersal of H. sapiens. KW - Evolutionary ecology KW - Limnology KW - Palaeoclimate Y1 - 2022 U6 - https://doi.org/10.1038/s41561-022-01032-y SN - 1752-0894 SN - 1752-0908 VL - 15 IS - 10 SP - 805 EP - 811 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Foerster, Verena A1 - Deocampo, Daniel M. A1 - Asrat, Asfawossen A1 - Günter, Christina A1 - Junginger, Annett A1 - Krämer, Kai Hauke A1 - Stroncik, Nicole A. A1 - Trauth, Martin H. T1 - Towards an understanding of climate proxy formation in the Chew Bahir basin, southern Ethiopian Rift JF - Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences N2 - Deciphering paleoclimate from lake sediments is a challenge due to the complex relationship between climate parameters and sediment composition. Here we show the links between potassium (K) concentrations in the sediments of the Chew Bahir basin in the Southern Ethiopian Rift and fluctuations in the catchment precipitation/evaporation balance. Our micro-X-ray fluorescence and X-ray diffraction results suggest that the most likely process linking climate with potassium concentrations is the authigenic illitization of smectites during episodes of higher alkalinity and salinity in the closed -basin lake, due to a drier climate. Whole-rock and clay size fraction analyses suggest that illitization of the Chew Bahir clay minerals with increasing evaporation is enhanced by octahedral Al-to-Mg substitution in the clay minerals, with the resulting layer charge increase facilitating potassium-fixation. Linking mineralogy with geochemistry shows the links between hydroclimatic control, process and formation of the Chew Bahir K patterns, in the context of well-known and widely documented eastern African climate fluctuations over the last 45,000 years. These results indicate characteristic mineral alteration patterns associated with orbitally controlled wet-dry cycles such as the African Humid Period (similar to 15-5 ka) or high-latitude controlled climate events such as the Younger Dryas (similar to 12.8-11.6 ka) chronozone. Determining the impact of authigenic mineral alteration on the Chew Bahir records enables the interpretation of the previously established pXRF-derived aridity proxy K and provides a better paleohydrological understanding of complex climate proxy formation. KW - Paleoclimatology KW - Authigenic mineral transformation KW - Potassium KW - Illitization KW - Zeolites Y1 - 2018 U6 - https://doi.org/10.1016/j.palaeo.2018.04.009 SN - 0031-0182 SN - 1872-616X VL - 501 SP - 111 EP - 123 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Trauth, Martin H. A1 - Foerster, Verena A1 - Junginger, Annett A1 - Asrat, Asfawossen A1 - Lamb, Henry F. A1 - Schäbitz, Frank T1 - Abrupt or gradual? BT - Change point analysis of the late Pleistocene-Holocene climate record from Chew Bahir, southern Ethiopia JF - Quaternary research : an interdisciplinary journal N2 - We used a change point analysis on a late Pleistocene-Holocene lake-sediment record from the Chew Bahir basin in the southern Ethiopian Rift to determine the amplitude and duration of past climate transitions. The most dramatic changes occurred over 240 yr (from similar to 15,700 to 15,460 yr) during the onset of the African Humid Period (AHP), and over 990 yr (from similar to 4875 to 3885 yr) during its protracted termination. The AHP was interrupted by a distinct dry period coinciding with the high-latitude Younger Dryas stadial, which had an abrupt onset (less than similar to 100 yr) at similar to 13,260 yr and lasted until similar to 11,730 yr. Wet-dry-wet transitions prior to the AHP may reflect the high-latitude Dansgaard-Oeschger cycles, as indicated by cross-correlation of the potassium record with the NorthGRIP ice core record between similar to 45-20 ka. These findings may contribute to the debates regarding the amplitude, and duration and mechanisms of past climate transitions, and their possible influence on the development of early modern human cultures. KW - Late Pleistocene KW - Holocene KW - Change point analysis KW - Principal component analysis KW - Paleoclimatology KW - Southern Ethiopian Rift KW - African Humid Period KW - Younger Dryas KW - Dansgaard-Oeschger cycles Y1 - 2018 U6 - https://doi.org/10.1017/qua.2018.30 SN - 0033-5894 SN - 1096-0287 VL - 90 IS - 2 SP - 321 EP - 330 PB - Cambridge Univ. Press CY - New York ER - TY - GEN A1 - Foerster, Verena A1 - Vogelsang, Ralf A1 - Junginger, Annett A1 - Asrat, Asfawossen A1 - Lamb, Henry F. A1 - Schäbitz, Frank A1 - Trauth, Martin H. T1 - Reply to the comment on "Environmental change and human occupation of southern Ethiopia and northern Kenya during the last 20,000 years. Quaternary Science Reviews 129: 333-340" T2 - Quaternary science reviews : the international multidisciplinary research and review journal Y1 - 2016 U6 - https://doi.org/10.1016/j.quascirev.2016.04.003 SN - 0277-3791 VL - 141 SP - 130 EP - 133 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Trauth, Martin H. A1 - Bergner, Andreas G. N. A1 - Foerster, Verena A1 - Junginger, Annett A1 - Maslin, Mark A. A1 - Schäbitz, Frank T1 - Episodes of environmental stability versus instability in Late Cenozoic lake records of Eastern Africa JF - Journal of human evolution N2 - Episodes of environmental stability and instability may be equally important for African hominin speciation, dispersal, and cultural innovation. Three examples of a change from stable to unstable environmental conditions are presented on three different time scales: (1) the Mid Holocene (MH) wet dry transition in the Chew Bahir basin (Southern Ethiopian Rift; between 11 ka and 4 ka), (2) the MIS 5-4 transition in the Naivasha basin (Central Kenya Rift; between 160 ka and 50 ka), and (3) the Early Mid Pleistocene Transition (EMPT) in the Olorgesailie basin (Southern Kenya Rift; between 1.25 Ma and 0.4 Ma). A probabilistic age modeling technique is used to determine the timing of these transitions, taking into account possible abrupt changes in the sedimentation rate including episodes of no deposition (hiatuses). Interestingly, the stable-unstable conditions identified in the three records are always associated with an orbitally-induced decrease of insolation: the descending portion of the 800 kyr cycle during the EMPT, declining eccentricity after the 115 ka maximum at the MIS 5-4 transition, and after similar to 10 ka. This observation contributes to an evidence-based discussion of the possible mechanisms causing the switching between environmental stability and instability in Eastern Africa at three different orbital time scales (10,000 to 1,000,000 years) during the Cenozoic. This in turn may lead to great insights into the environmental changes occurring at the same time as hominin speciation, brain expansion, dispersal out of Africa, and cultural innovations and may provide key evidence to build new hypotheses regarding the causes of early human evolution. (C) 2015 Elsevier Ltd. All rights reserved. KW - Paleoclimate KW - East Africa KW - Human evolution KW - Lakes KW - Sediments Y1 - 2015 U6 - https://doi.org/10.1016/j.jhevol.2015.03.011 SN - 0047-2484 VL - 87 SP - 21 EP - 31 PB - Elsevier CY - London ER - TY - JOUR A1 - Foerster, Verena A1 - Vogelsang, Ralf A1 - Junginger, Annett A1 - Asrat, Asfawossen A1 - Lamb, Henry F. A1 - Schäbitz, Frank A1 - Trauth, Martin H. T1 - Environmental change and human occupation of southern Ethiopia and northern Kenya during the last 20,000 years JF - Quaternary science reviews : the international multidisciplinary research and review journal N2 - Our understanding of the impact of climate-driven environmental change on prehistoric human populations is hampered by the scarcity of continuous paleoenvironmental records in the vicinity of archaeological sites. Here we compare a continuous paleoclimatic record of the last 20 ka before present from the Chew Bahir basin, southwest Ethiopia, with the available archaeological record of human presence in the region. The correlation of this record with orbitally-driven insolation variations suggests a complex nonlinear response of the environment to climate forcing, reflected in several long-term and short-term transitions between wet and dry conditions, resulting in abrupt changes between favorable and unfavorable living conditions for humans. Correlating the archaeological record in the surrounding region of the Chew Bahir basin, presumably including montane and lake-marginal refugia for human populations, with our climate record suggests a complex interplay between humans and their environment during the last 20 ka. The result may contribute to our understanding of how a dynamic environment may have impacted the adaptation and dispersal of early humans in eastern Africa. (C) 2015 Elsevier Ltd. All rights reserved. KW - Archeology KW - Paleoclimate KW - African humid period KW - Push factor KW - Adaption KW - Migration KW - Hunter-gatherers KW - Foragers KW - Pastoralism KW - Chew Bahir Y1 - 2015 U6 - https://doi.org/10.1016/j.quascirev.2015.10.026 SN - 0277-3791 VL - 129 SP - 333 EP - 340 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Junginger, Annett A1 - Roller, Sybille A1 - Olaka, Lydia A. A1 - Trauth, Martin H. T1 - The effects of solar irradiation changes on the migration of the Congo Air Boundary and water levels of paleo-Lake Suguta, Northern Kenya Rift, during the African Humid Period (15-5 ka BP) JF - Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences N2 - The water-level record from the 300 m deep paleo-lake Suguta (Northern Kenya Rift) during the African Humid Period (AHP, 15-5 ka BP) helps to explain decadal to centennial intensity variations in the West African Monsoon (WAM) and the Indian Summer Monsoon (ISM). This water-level record was derived from three different sources: (1) grain size variations in radiocarbon dated and reservoir corrected lacustrine sediments, (2) the altitudes and ages of paleo-shorelines within the basin, and (3) the results of hydro-balance modeling, providing important insights into the character of water level variations (abrupt or gradual) in the amplifier paleo-Lake Suguta. The results of these comprehensive analyses suggest that the AHP highstand in the Suguta Valley was the direct consequence of a northeastwards shift in the Congo Air Boundary (CAB), which was in turn caused by an enhanced atmospheric pressure gradient between East Africa and India during a northern hemisphere insolation maximum. Rapidly decreasing water levels of up to 90 m over less than a hundred years are best explained by changes in solar irradiation either reducing the East African-Indian atmospheric pressure gradient and preventing the CAB from reaching the study area, or reducing the overall humidity in the atmosphere, or a combination of both these effects. In contrast, although not well documented in our record we hypothesize a gradual end of the AHP despite an abrupt change in the source of precipitation when a decreasing pressure gradient between Asia and Africa prevented the CAB from reaching the Suguta Valley. The abruptness was probably buffered by a contemporaneous change in precession producing an insolation maximum at the equator during October. Whether or not this is the case, the water-level record from the Suguta Valley demonstrates the importance of both orbitally-controlled insolation variations and short-term changes in solar irradiation as factors affecting the significant water level variations in East African rift lakes. KW - East African Rift System KW - Suguta Valley KW - African Humid Period KW - Congo Air Boundary Y1 - 2014 U6 - https://doi.org/10.1016/j.palaeo.2013.12.007 SN - 0031-0182 SN - 1872-616X VL - 396 SP - 1 EP - 16 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Stoof-Leichsenring, Kathleen Rosemarie A1 - Junginger, Annett A1 - Olaka, Lydia A. A1 - Tiedemann, Ralph A1 - Trauth, Martin H. T1 - Environmental variability in Lake Naivasha, Kenya, over the last two centuries JF - Journal of paleolimnolog N2 - Lake Naivasha, Kenya, is one of a number of freshwater lakes in the East African Rift System. Since the beginning of the twentieth century, it has experienced greater anthropogenic influence as a result of increasingly intensive farming of coffee, tea, flowers, and other horticultural crops within its catchment. The water-level history of Lake Naivasha over the past 200 years was derived from a combination of instrumental records and sediment data. In this study, we analysed diatoms in a lake sediment core to infer past lacustrine conductivity and total phosphorus concentrations. We also measured total nitrogen and carbon concentrations in the sediments. Core chronology was established by (210)Pb dating and covered a similar to 186-year history of natural (climatic) and human-induced environmental changes. Three stratigraphic zones in the core were identified using diatom assemblages. There was a change from littoral/epiphytic diatoms such as Gomphonema gracile and Cymbella muelleri, which occurred during a prolonged dry period from ca. 1820 to 1896 AD, through a transition period, to the present planktonic Aulacoseira sp. that favors nutrient-rich waters. This marked change in the diatom assemblage was caused by climate change, and later a strong anthropogenic overprint on the lake system. Increases in sediment accumulation rates since 1928, from 0.01 to 0.08 g cm(-2) year(-1) correlate with an increase in diatom-inferred total phosphorus concentrations since the beginning of the twentieth century. The increase in phosphorus accumulation suggests increasing eutrophication of freshwater Lake Naivasha. This study identified two major periods in the lake's history: (1) the period from 1820 to 1950 AD, during which the lake was affected mainly by natural climate variations, and (2) the period since 1950, during which the effects of anthropogenic activity overprinted those of natural climate variation. KW - Lake sediments KW - Diatoms KW - Conductivity KW - Lake Naivasha KW - Human impact KW - Eutrophication Y1 - 2011 U6 - https://doi.org/10.1007/s10933-011-9502-4 SN - 0921-2728 VL - 45 IS - 3 SP - 353 EP - 367 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Förster, Verena A1 - Junginger, Annett A1 - Langkamp, Oliver A1 - Gebru, Tsige A1 - Asrat, Asfawossen A1 - Umer, Mohammed A1 - Lamb, Henry F. A1 - Wennrich, Volker A1 - Rethemeyer, Janet A1 - Nowaczyk, Norbert A1 - Trauth, Martin H. A1 - Schäbitz, Frank T1 - Climatic change recorded in the sediments of the Chew Bahir basin, southern Ethiopia, during the last 45,000 years JF - Quaternary international : the journal of the International Union for Quaternary Research N2 - East African paleoenvironments are highly variable, marked by extreme fluctuations in moisture availability, which has far-reaching implications for the origin, evolution and dispersal of Homo sapiens in and beyond the region. This paper presents results from a pilot core from the Chew Bahir basin in southern Ethiopia that records the climatic history of the past 45 ka, with emphasis on the African Humid Period (AHP, similar to 15-5 ka calBP). Geochemical, physical and biological indicators show that Chew Bahir responded to climatic fluctuations on millennial to centennial timescales, and to the precessional cycle, since the Last Glacial Maximum. Potassium content of the sediment appears to be a reliable proxy for aridity, showing that Chew Bahir reacted to the insolation-controlled humidity increase of the AHP with a remarkably abrupt onset and a gradual termination, framing a sharply defined arid phase (similar to 12.8-11.6 ka calBP) corresponding to the Younger Dryas chronozone. The Chew Bahir record correlates well with low- and high-latitude paleoclimate records, demonstrating that the site responded to regional and global climate changes. Y1 - 2012 U6 - https://doi.org/10.1016/j.quaint.2012.06.028 SN - 1040-6182 VL - 274 IS - 19 SP - 25 EP - 37 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Junginger, Annett A1 - Trauth, Martin H. T1 - Hydrological constraints of paleo-Lake Suguta in the Northern Kenya Rift during the African Humid Period (15-5 ka BP) JF - Global and planetary change N2 - During the African Humid Period (AHP, 15-5 ka BP) an almost 300 m deep paleo-lake covering 2200 km(2) developed in the Suguta Valley, in the Northern Kenya Rift Data from lacustrine sediments and paleo-shorelines indicate that a large paleo-lake already existed by 13.9 ka BP, and record rapid water level fluctuations of up to 100 m within periods of 100 years or less, and a final lowstand at the end of the AHP (5 ka BP). We used a hydro-balance model to assess the abruptness of these water level fluctuations and identify their causes. We observed that fluctuations within the AHP were caused by abrupt changes in precipitation of 26-40%. Despite the absence of continuous lacustrine data documenting the onset of the AHP in the Suguta Valley, we conclude from the hydro-balance model that only an abrupt onset to the AHP, prior to 14.8 ka BP, could have led to high water levels recorded. The modeling results suggest that the sudden increase in rainfall was the direct consequence of an eastward migration of the Congo Air Boundary (CAB), caused by an enhanced atmospheric pressure gradient between East Africa and southern Asia during a northern hemisphere (NH) summer insolation maximum. In contrast the end of the AHP must have been gradual despite an abrupt change in the source of precipitation when a decreasing pressure gradient between Asia and Africa prevented the CAB from reaching the study area. This abruptness was probably buffered by a contemporaneous change in precession producing an insolation maximum at the equator during September-October. This change would have meant that the only rain source was the Intertropical Convergence Zone (IT CZ), which would have carried a greater amount of moisture during the short rainy season thus slowing the fall in water level over a period of about 1000 years in association with the reduction in insolation. The results of this study provide an indication of the amount of time available for humans in north-eastern Africa to adapt in response to a changing climate, from hunting and gathering to farming and herding. KW - East African Rift System KW - Suguta Valley KW - African Humid Period KW - Congo Air Boundary Y1 - 2013 U6 - https://doi.org/10.1016/j.gloplacha.2013.09.005 SN - 0921-8181 SN - 1872-6364 VL - 111 IS - 12 SP - 174 EP - 188 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Trauth, Martin H. A1 - Maslin, Mark A. A1 - Deino, Alan L. A1 - Junginger, Annett A1 - Lesoloyia, Moses A1 - Odada, Eric O. A1 - Olago, Daniel O. A1 - Olaka, Lydia A. A1 - Strecker, Manfred A1 - Tiedemann, Ralph T1 - Human evolution in a variable environment : the amplifier lakes of Eastern Africa N2 - The development of rise Cenozoic East African Rift System (EARS) profoundly re-shaped the landscape and significantly increased the amplitude of short-term environmental response to climate variation. In particular, the development of amplifier lakes in rift basins after three million years ago significantly contributed to this exceptional sensitivity of East Africa to climate change compared to elsewhere on the African continent. Amplifier lakes are characterized by tectonically-formed graben morphologies in combination with an extreme contrast between high precipitation in the elevated parts of the catchment and high evaporation in the lake area. Such amplifier lakes respond rapidly to moderate, precessional-forced climate shifts, and as they do so apply dramatic environmental pressure to the biosphere. Rift basins, when either extremely dry or lake-filled, form important barriers for migration, mixing and competition of different populations of animals and hominins. Amplifier lakes link long-term, high-amplitude tectonic processes and short-term environmental fluctuations. East Africa may have become the place where early humans evolved as a consequence of this strong link between different time scales. (C) 2010 Elsevier Ltd. All rights reserved. Y1 - 2010 UR - http://www.sciencedirect.com/science/journal/02773791 U6 - https://doi.org/10.1016/j.quascirev.2010.07.007 SN - 0277-3791 ER - TY - JOUR A1 - Garcin, Yannick A1 - Junginger, Annett A1 - Melnick, Daniel A1 - Olago, Daniel O. A1 - Strecker, Manfred A1 - Trauth, Martin H. T1 - Late Pleistocene-Holocene rise and collapse of the Lake Suguta, northern Kenya Rift Y1 - 2009 UR - http://www.sciencedirect.com/science/journal/02773791 U6 - https://doi.org/10.1016/j.quascirev.2008.12.006 ER -