TY - JOUR A1 - Kaiser, Knut A1 - Oldorff, Silke A1 - Breitbach, Carsten A1 - Kappler, Christoph A1 - Theuerkauf, Martin A1 - Scharnweber, Tobias A1 - Schult, Manuela A1 - Kuester, Mathias A1 - Engelhardt, Christof A1 - Heinrich, Ingo A1 - Hupfer, Michael A1 - Schwalbe, Grit A1 - Kirschey, Tom A1 - Bens, Oliver T1 - A submerged pine forest from the early Holocene in the Mecklenburg Lake District, northern Germany JF - Boreas N2 - For the first time, evidence of a submerged pine forest from the early Holocene can be documented in a central European lake. Subaquatic tree stumps were discovered in Lake Giesenschlagsee at a depth of between 2 and 5m using scuba divers, side-scan sonar and a remotely operated vehicle. Several erect stumps, anchored to the ground by roots, represent an insitu record of this former forest. Botanical determination revealed the stumps to be Scots pine (Pinus sylvestris) with an individual tree age of about 80years. The trees could not be dated by means of dendrochronology, as they are older than the regional reference chronology for pine. Radiocarbon ages from the wood range from 10880 +/- 210 to 10370 +/- 130cal. a BP, which is equivalent to the mid-Preboreal to early Boreal biozones. The trees are rooted in sedge peat, which can be dated to this period as well, using pollen stratigraphical analysis. Tilting of the peat bed by 4m indicates subsidence of the ground due to local dead ice melting, causing the trees to become submerged and preserved for millennia. Together with recently detected Lateglacial insitu tree occurrences in nearby lakes, the submerged pine forest at Giesenschlagsee represents a new and highly promising type of geo-bio-archive for the wider region. Comparable insitu pine remnants occur at some terrestrial (buried setting) and marine (submerged setting) sites in northern central Europe and beyond, but they partly differ in age. In general, the insitu pine finds document shifts of the zonal boreal forest ecosystem during the late Quaternary. Y1 - 2018 U6 - https://doi.org/10.1111/bor.12314 SN - 0300-9483 SN - 1502-3885 VL - 47 IS - 3 SP - 910 EP - 925 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Wilken, Florian A1 - Baur, Martin A1 - Sommer, Michael A1 - Deumlich, Detlef A1 - Bens, Oliver A1 - Fiener, Peter T1 - Uncertainties in rainfall kinetic energy-intensity relations for soil erosion modelling JF - Catena : an interdisciplinary journal of soil science, hydrology, geomorphology focusing on geoecology and landscape evolution N2 - For bare soil conditions, the most important process driving and initiating splash and interrill erosion is the detachment of soil particles via raindrop impact. The kinetic energy of a rainfall event is controlled by the drop size and fall velocity distribution, which is often directly or indirectly implemented in erosion models. Therefore, numerous theoretical functions have been developed for the estimation of rainfall kinetic energy from available rainfall intensity measurements. The aim of this study is to assess differences inherent in a wide number of kinetic energy-rainfall intensity (KE-I) relations and their role in soil erosion modelling. Therefore, 32 KE-I relations are compared against measured rainfall energies based on optical distrometer measurements carried out at five stations of two substantially different rainfall regimes. These allow for continuous high-resolution (1-min) direct measurements of rainfall kinetic energies from a detailed spectrum of measured drop sizes and corresponding fall velocities. To quantify the effect of different KE-I relations on sediment delivery, we apply the erosion model WATEM/SEDEM in an experimental setup to four catchments of NE-Germany. The distrometer data shows substantial differences between measured and theoretical models of drop size and fall velocity distributions. For low intensities the number of small drops is overestimated by the Marshall and Palmer (1948; MP) drop size distribution, while for high intensities the proportion of large drops is overestimated by the MP distribution. The distrometer measurements show a considerable proportion of large drops falling at slower velocities than predicted by the Gunn and Kinzer (1949) terminal velocity model. For almost all rainfall events at all stations, the KE-I relations predicted higher cumulative kinetic energy sums compared to the direct measurements of the optical distrometers. The different KE-I relations show individual characteristics over the course of rainfall intensity levels. Our results indicate a high sensitivity (up to a range from 10 to 27 t ha(-1)) of the simulated sediment delivery related to different KE-I relations. Hence, the uncertainty associated with KE-I relations for soil erosion modelling is of critical importance. KW - Rainfall kinetic energy KW - Drop size distribution KW - Drop fall velocity KW - Soil erosion modelling KW - Optical distrometer Y1 - 2018 U6 - https://doi.org/10.1016/j.catena.2018.07.002 SN - 0341-8162 SN - 1872-6887 VL - 171 SP - 234 EP - 244 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Heinrich, Ingo A1 - Balanzategui, Daniel A1 - Bens, Oliver A1 - Blasch, Gerald A1 - Blume, Theresa A1 - Boettcher, Falk A1 - Borg, Erik A1 - Brademann, Brian A1 - Brauer, Achim A1 - Conrad, Christopher A1 - Dietze, Elisabeth A1 - Dräger, Nadine A1 - Fiener, Peter A1 - Gerke, Horst H. A1 - Güntner, Andreas A1 - Heine, Iris A1 - Helle, Gerhard A1 - Herbrich, Marcus A1 - Harfenmeister, Katharina A1 - Heussner, Karl-Uwe A1 - Hohmann, Christian A1 - Itzerott, Sibylle A1 - Jurasinski, Gerald A1 - Kaiser, Knut A1 - Kappler, Christoph A1 - Koebsch, Franziska A1 - Liebner, Susanne A1 - Lischeid, Gunnar A1 - Merz, Bruno A1 - Missling, Klaus Dieter A1 - Morgner, Markus A1 - Pinkerneil, Sylvia A1 - Plessen, Birgit A1 - Raab, Thomas A1 - Ruhtz, Thomas A1 - Sachs, Torsten A1 - Sommer, Michael A1 - Spengler, Daniel A1 - Stender, Vivien A1 - Stüve, Peter A1 - Wilken, Florian T1 - Interdisciplinary Geo-ecological Research across Time Scales in the Northeast German Lowland Observatory (TERENO-NE) JF - Vadose zone journal N2 - The Northeast German Lowland Observatory (TERENO-NE) was established to investigate the regional impact of climate and land use change. TERENO-NE focuses on the Northeast German lowlands, for which a high vulnerability has been determined due to increasing temperatures and decreasing amounts of precipitation projected for the coming decades. To facilitate in-depth evaluations of the effects of climate and land use changes and to separate the effects of natural and anthropogenic drivers in the region, six sites were chosen for comprehensive monitoring. In addition, at selected sites, geoarchives were used to substantially extend the instrumental records back in time. It is this combination of diverse disciplines working across different time scales that makes the observatory TERENO-NE a unique observation platform. We provide information about the general characteristics of the observatory and its six monitoring sites and present examples of interdisciplinary research activities at some of these sites. We also illustrate how monitoring improves process understanding, how remote sensing techniques are fine-tuned by the most comprehensive ground-truthing site DEMMIN, how soil erosion dynamics have evolved, how greenhouse gas monitoring of rewetted peatlands can reveal unexpected mechanisms, and how proxy data provides a long-term perspective of current ongoing changes. Y1 - 2018 U6 - https://doi.org/10.2136/vzj2018.06.0116 SN - 1539-1663 VL - 17 IS - 1 PB - Soil Science Society of America CY - Madison ER -