TY - JOUR A1 - Kreibich, Heidi A1 - Di Baldassarre, Giuliano A1 - Vorogushyn, Sergiy A1 - Aerts, Jeroen C. J. H. A1 - Apel, Heiko A1 - Aronica, Giuseppe T. A1 - Arnbjerg-Nielsen, Karsten A1 - Bouwer, Laurens M. A1 - Bubeck, Philip A1 - Caloiero, Tommaso A1 - Chinh, Do T. A1 - Cortes, Maria A1 - Gain, Animesh K. A1 - Giampa, Vincenzo A1 - Kuhlicke, Christian A1 - Kundzewicz, Zbigniew W. A1 - Llasat, Maria Carmen A1 - Mard, Johanna A1 - Matczak, Piotr A1 - Mazzoleni, Maurizio A1 - Molinari, Daniela A1 - Dung, Nguyen V. A1 - Petrucci, Olga A1 - Schröter, Kai A1 - Slager, Kymo A1 - Thieken, Annegret A1 - Ward, Philip J. A1 - Merz, Bruno T1 - Adaptation to flood risk BT - Results of international paired flood event studies JF - Earth's Future N2 - As flood impacts are increasing in large parts of the world, understanding the primary drivers of changes in risk is essential for effective adaptation. To gain more knowledge on the basis of empirical case studies, we analyze eight paired floods, that is, consecutive flood events that occurred in the same region, with the second flood causing significantly lower damage. These success stories of risk reduction were selected across different socioeconomic and hydro-climatic contexts. The potential of societies to adapt is uncovered by describing triggered societal changes, as well as formal measures and spontaneous processes that reduced flood risk. This novel approach has the potential to build the basis for an international data collection and analysis effort to better understand and attribute changes in risk due to hydrological extremes in the framework of the IAHSs Panta Rhei initiative. Across all case studies, we find that lower damage caused by the second event was mainly due to significant reductions in vulnerability, for example, via raised risk awareness, preparedness, and improvements of organizational emergency management. Thus, vulnerability reduction plays an essential role for successful adaptation. Our work shows that there is a high potential to adapt, but there remains the challenge to stimulate measures that reduce vulnerability and risk in periods in which extreme events do not occur. KW - flooding KW - vulnerability KW - global environmental change KW - adaptation Y1 - 2017 U6 - https://doi.org/10.1002/2017EF000606 SN - 2328-4277 VL - 5 SP - 953 EP - 965 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Di Baldassarre, Giuliano A1 - Kreibich, Heidi A1 - Vorogushyn, Sergiy A1 - Aerts, Jeroen A1 - Arnbjerg-Nielsen, Karsten A1 - Barendrecht, Marlies A1 - Bates, Paul A1 - Borga, Marco A1 - Botzen, Wouter A1 - Bubeck, Philip A1 - De Marchi, Bruna A1 - Llasat, Carmen Maria A1 - Mazzoleni, Maurizio A1 - Molinari, Daniela A1 - Mondino, Elena A1 - Mard, Johanna A1 - Petrucci, Olga A1 - Scolobig, Anna A1 - Viglione, Alberto A1 - Ward, Philip J. T1 - Hess Opinions: An interdisciplinary research agenda to explore the unintended consequences of structural flood protection JF - Hydrology and earth system sciences : HESS N2 - One common approach to cope with floods is the implementation of structural flood protection measures, such as levees or flood-control reservoirs, which substantially reduce the probability of flooding at the time of implementation. Numerous scholars have problematized this approach. They have shown that increasing the levels of flood protection can attract more settlements and high-value assets in the areas protected by the new measures. Other studies have explored how structural measures can generate a sense of complacency, which can act to reduce preparedness. These paradoxical risk changes have been described as "levee effect", "safe development paradox" or "safety dilemma". In this commentary, we briefly review this phenomenon by critically analysing the intended benefits and unintended effects of structural flood protection, and then we propose an interdisciplinary research agenda to uncover these paradoxical dynamics of risk. Y1 - 2018 U6 - https://doi.org/10.5194/hess-22-5629-2018 SN - 1027-5606 SN - 1607-7938 VL - 22 IS - 11 SP - 5629 EP - 5637 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Merz, Bruno A1 - Aerts, Jeroen C. J. H. A1 - Arnbjerg-Nielsen, Karsten A1 - Baldi, M. A1 - Becker, Andrew C. A1 - Bichet, A. A1 - Bloeschl, G. A1 - Bouwer, Laurens M. A1 - Brauer, Achim A1 - Cioffi, F. A1 - Delgado, Jose Miguel Martins A1 - Gocht, M. A1 - Guzzetti, F. A1 - Harrigan, S. A1 - Hirschboeck, K. A1 - Kilsby, C. A1 - Kron, W. A1 - Kwon, H. -H. A1 - Lall, U. A1 - Merz, R. A1 - Nissen, K. A1 - Salvatti, P. A1 - Swierczynski, Tina A1 - Ulbrich, U. A1 - Viglione, A. A1 - Ward, P. J. A1 - Weiler, M. A1 - Wilhelm, B. A1 - Nied, Manuela T1 - Floods and climate: emerging perspectives for flood risk assessment and management JF - Natural hazards and earth system sciences N2 - Flood estimation and flood management have traditionally been the domain of hydrologists, water resources engineers and statisticians, and disciplinary approaches abound. Dominant views have been shaped; one example is the catchment perspective: floods are formed and influenced by the interaction of local, catchment-specific characteristics, such as meteorology, topography and geology. These traditional views have been beneficial, but they have a narrow framing. In this paper we contrast traditional views with broader perspectives that are emerging from an improved understanding of the climatic context of floods. We come to the following conclusions: (1) extending the traditional system boundaries (local catchment, recent decades, hydrological/hydraulic processes) opens up exciting possibilities for better understanding and improved tools for flood risk assessment and management. (2) Statistical approaches in flood estimation need to be complemented by the search for the causal mechanisms and dominant processes in the atmosphere, catchment and river system that leave their fingerprints on flood characteristics. (3) Natural climate variability leads to time-varying flood characteristics, and this variation may be partially quantifiable and predictable, with the perspective of dynamic, climate-informed flood risk management. (4) Efforts are needed to fully account for factors that contribute to changes in all three risk components (hazard, exposure, vulnerability) and to better understand the interactions between society and floods. (5) Given the global scale and societal importance, we call for the organization of an international multidisciplinary collaboration and data-sharing initiative to further understand the links between climate and flooding and to advance flood research. Y1 - 2014 U6 - https://doi.org/10.5194/nhess-14-1921-2014 SN - 1561-8633 VL - 14 IS - 7 SP - 1921 EP - 1942 PB - Copernicus CY - Göttingen ER -