TY - GEN A1 - Huu, Cuong Nguyen A1 - Plaschil, Sylvia A1 - Himmelbach, Axel A1 - Kappel, Christian A1 - Lenhard, Michael T1 - Female self-incompatibility type in heterostylous Primula is determined by the brassinosteroid-inactivating cytochrome P450 CYP734A50 T2 - Current biology N2 - Most flowering plants are hermaphrodites, with flowers having both male and female reproductive organs. One widespread adaptation to limit self-fertilization is self-incompatibility (SI), where self-pollen fails to fertilize ovules.(1,2) In homomorphic SI, many morphologically indistinguishable mating types are found, although in heteromorphic SI, the two or three mating types are associated with different floral morphologies.(3-6) In heterostylous Primula, a hemizygous supergene determines a short-styled S-morph and a long-styled L-morph, corresponding to two different mating types, and full seed set only results from inter morph crosses.(7-9) Style length is controlled by the brassinosteroid (BR)-inactivating cytochrome P450 CYP734A50,(10) yet it remains unclear what defines the male and female incompatibility types. Here, we show that CYP734A50 also determines the female incompatibility type. Inactivating CYP734A50 converts short S-morph styles into long styles with the same incompatibility behavior as L-morph styles, and this effect can be mimicked by exogenous BR treatment. In vitro responses of S-and L-morph pollen grains and pollen tubes to increasing BR levels could only partly explain their different in vivo behavior, suggesting both direct and indirect effects of the different BR levels in S-versus L-morph stigmas and styles in controlling pollen performance. This BR-mediated SI provides a novel mechanism for preventing self-fertilization. The joint control of morphology and SI by CYP734A50 has important implications for the evolutionary buildup of the heterostylous syndrome and provides a straightforward explanation for why essentially all of the derived self-compatible homostylous Primula species are long homostyles.(11) KW - heteromorphic self-incompatibility KW - heterostyly KW - Primula forbesii KW - brassinosteroid KW - CYP734A50 KW - supergene KW - pleiotropy Y1 - 2022 U6 - https://doi.org/10.1016/j.cub.2021.11.046 SN - 0960-9822 SN - 1879-0445 VL - 32 IS - 3 SP - 671 EP - 676, E1-E5 PB - Cell Press CY - Cambridge, Mass. ER - TY - GEN A1 - Kramer, Elena M. A1 - Lenhard, Michael T1 - Shape and form in plant development T2 - Seminars in cell & developmental biology Y1 - 2017 U6 - https://doi.org/10.1016/j.semcdb.2017.11.004 SN - 1084-9521 VL - 79 SP - 1 EP - 2 PB - Elsevier CY - London ER - TY - GEN A1 - Sicard, Adrien A1 - Lenhard, Michael T1 - Capsella T2 - Current biology Y1 - 2018 U6 - https://doi.org/10.1016/j.cub.2018.06.033 SN - 0960-9822 SN - 1879-0445 VL - 28 IS - 17 SP - R920 EP - R921 PB - Cell Press CY - Cambridge ER - TY - GEN A1 - Bartholomäus, Lisa A1 - Lenhard, Michael T1 - Plant Biology: Learning to Love Yourself T2 - Current biology N2 - In self-incompatible plants the female style rejects self pollen, yet the extent to which the female style in the many self-compatible species can still select between different pollen genotypes and thus bias fertilization success is unclear. A new study identifies the molecular basis for how styles of the self-compatible coyote tobacco bias the fertilization success of pollen genotypes using matching gene expression patterns in a manner analogous to cryptic female choice in animals. Y1 - 2019 U6 - https://doi.org/10.1016/j.cub.2019.06.015 SN - 0960-9822 SN - 1879-0445 VL - 29 IS - 14 SP - R695 EP - R697 PB - Cell Press CY - Cambridge ER - TY - GEN A1 - Zhang, Yunming A1 - Lenhard, Michael T1 - Exiting Already? Molecular Control of Cell-Proliferation Arrest in Leaves: Cutting Edge T2 - Molecular plant Y1 - 2017 U6 - https://doi.org/10.1016/j.molp.2017.05.004 SN - 1674-2052 SN - 1752-9867 VL - 10 SP - 909 EP - 911 PB - Cell Press CY - Cambridge ER - TY - GEN A1 - Lenhard, Michael T1 - Plant Development: Keeping on the Straight and Narrow and Flat T2 - Current biology Y1 - 2017 U6 - https://doi.org/10.1016/j.cub.2017.10.030 SN - 0960-9822 SN - 1879-0445 VL - 27 SP - R1277 EP - R1280 PB - Cell Press CY - Cambridge ER -