TY - JOUR A1 - Stanglmair, Christoph A1 - Neubrech, Frank A1 - Pacholski, Claudia T1 - Chemical routes to surface enhanced infrared absorption (SEIRA) substrates JF - Zeitschrift für physikalische Chemie : international journal of research in physical chemistry and chemical physics N2 - Bottom-up strategies for fabricating SEIRA substrates are presented. For this purpose, wet-chemically prepared gold nanoparticles are coated with a polystyrene shell and subsequently self-assembled into different nanostructures such as quasi-hexagonally ordered gold nanoparticle monolayers, double layers, and honeycomb structures. Furthermore elongated gold nanostructures are obtained by sintering of gold nanoparticle double layers. The optical properties of these different gold nanostructures are directly connected to their morphology and geometrical arrangement - leading to surface plasmon resonances from the visible to the infrared wavelength range. Finally, SEIRA enhancement factors are determined. Gold nanoparticle double layers show the best performance as SEIRA substrates. KW - bottom-up KW - gold nanoparticles KW - self-assembly KW - surface enhanced spectroscopy Y1 - 2018 U6 - https://doi.org/10.1515/zpch-2018-1132 SN - 0942-9352 VL - 232 IS - 9-11 SP - 1527 EP - 1539 PB - De Gruyter CY - Berlin ER - TY - THES A1 - Nizardo, Noverra Mardhatillah T1 - Thermoresponsive block copolymers with UCST-behavior aimed at biomedical environments T1 - Thermoresponsive Blockcopolymere mit UCST-Verhalten unter biomedizinisch relevanten Bedingungen N2 - Thermoresponsive block copolymers of presumably highly biocompatible character exhibiting upper critical solution temperature (UCST) type phase behavior were developed. In particular, these polymers were designed to exhibit UCST-type cloud points (Tcp) in physiological saline solution (9 g/L) within the physiologically interesting window of 30-50°C. Further, their use as carrier for controlled release purposes was explored. Polyzwitterion-based block copolymers were synthesized by atom transfer radical polymerization (ATRP) via a macroinitiator approach with varied molar masses and co-monomer contents. These block copolymers can self-assemble in the amphiphilic state to form micelles, when the thermoresponsive block experiences a coil-to-globule transition upon cooling. Poly(ethylene glycol) methyl ether (mPEG) was used as the permanently hydrophilic block to stabilize the colloids formed, and polyzwitterions as the thermoresponsive block to promote the temperature-triggered assembly-disassembly of the micellear aggregates at low temperature. Three zwitterionic monomers were used for this studies, namely 3-((2-(methacryloyloxy)ethyl)dimethylammonio)propane-1-sulfonate (SPE), 4-((2-(methacryloyl- oxy)ethyl)dimethylammonio)butane-1-sulfonate (SBE), and 3-((2-(methacryloyloxy)ethyl)- dimethylammonio)propane-1-sulfate) (ZPE). Their (co)polymers were characterized with respect to their molecular structure by proton nuclear magnetic resonance (1H-NMR) and gel permeation chromatography (GPC). Their phase behaviors in pure water as well as in physiological saline were studied by turbidimetry and dynamic light scattering (DLS). These (co)polymers are thermoresponsive with UCST-type phase behavior in aqueous solution. Their phase transition temperatures depend strongly on the molar masses and the incorporation of co-monomers: phase transition temperatures increased with increasing molar masses and content of poorly water-soluble co-monomer. In addition, the presence of salt influenced the phase transition dramatically. The phase transition temperature decreased with increasing salt content in the solution. While the PSPE homopolymers show a phase transition only in pure water, the PZPE homopolymers are able to exhibit a phase transition only in high salinity, as in physiological saline. Although both polyzwitterions have similar chemical structures that differ only in the anionic group (sulfonate group in SPE and sulfate group in ZPE), the water solubility is very different. Therefore, the phase transition temperatures of targeted block copolymers were modulated by using statistical copolymer of SPE and ZPE as thermoresponsive block, and varying the ratio of SPE to ZPE. Indeed, the statistical copolymers of P(SPE-co-ZPE) show phase transitions both in pure water as well as in physiological saline. Surprisingly, it was found that mPEG-b-PSBE block copolymer can display “schizophrenic” behavior in pure water, with the UCST-type cloud point occurring at lower temperature than the LCST-type one. The block copolymer, which satisfied best the boundary conditions, is block copolymer mPEG114-b-P(SPE43-co-ZPE39) with a cloud point of 45°C in physiological saline. Therefore, it was chosen for solubilization studies of several solvatochromic dyes as models of active agents, using the thermoresponsive block copolymer as “smart” carrier. The uptake and release of the dyes were explored by UV-Vis and fluorescence spectroscopy, following the shift of the wavelength of the absorbance or emission maxima at low and high temperature. These are representative for the loaded and released state, respectively. However, no UCST-transition triggered uptake and release of these dyes could be observed. Possibly, the poor affinity of the polybetaines to the dyes in aqueous environtments may be related to the widely reported antifouling properties of zwitterionic polymers. N2 - Neue thermisch-responsive Blockcopolymere mit vermutlich hoher biokompatibilität wurden entwickelt, die ein Phasenverhalten mit oberer kritischer Lösungstemperatur (UCST) in wässriger zeigen. Insbesondere wurden diese Polymere so gestaltet, dass sie Trübungspunkte des UCST-Übergangs (Tcp) in physiologischer Kochsalzlösung (9 g/l) innerhalb des physiologischen interessanten Temperaturfensters von 30-50°C zeigen. Außerdem wurde ihre Eignung als Träger für kontrollierte Freisetzungszwecke untersucht. Diese Polyzwitterionen-basierte Blockcopolymere wurden durch „Atom transfer radikal polymerisation“ (ATRP) unter Verwendung eines Makroinitiators mit verschiedenen Molmassen und Anteilen von Comonomeren dargestellt. Diese Blockcopolymere können sich im amphiphilen Zustand zu Mizellen selbstorganisieren, wenn der thermisch-responsive Block beim Abkühlen einen Übergang vom Knäulen zur Kügel erfährt. Poly (ethylenglycol) methylether (mPEG) wurde als permanent hydrophiler Blockverwendet, der die gebildeten Kolloide stabilisiert, und Polyzwitterionen als thermisch-responsiver Block, der bei niedriger Temperatur die temperaturinduzierte Bildung von Mizellen bewirkt. Drei zwitterionische Monomere wurden für diese Untersuchungen verwendet, 3-((2-(meth- acryloyloxy)ethyl)dimethylammonio)propane-1-sulfonate (SPE), 4-((2-(methacryloyloxy)- ethyl)dimethylammonio)butane-1-sulfonate (SBE), und 3-((2-(methacryloyloxy)ethyl) dimethylammonio)propane-1-sulfate) (ZPE). Die (Co)Polymere wurden durch protonen-kernmagnetische Resonanz (1H-NMR) und Gelpermeationschromatographie (GPC) charakterisiert. Ihr Phasenübergangsverhalten im Wasser sowie in physiologischer Kochsalzlösung wurde durch Trübheitsmessungen und dynamische Lichtstreuung (DLS) untersucht. Diese (Co)Polymere sind thermisch-responsiv mit einem UCST-Übergang als Phasenverhalten in wässriger Lösung. Die Übergangstemperaturen hängen stark von den Molmassen und von dem Anteil der Co-Monomeren ab: Eine Vergrößerung der Molmasse und des Anteils an schwerwasserlöslichem Comonomer führt zu einer Erhöhung der Phasenübergangstemperaturen. Des Weiteren beeinflusst ein Salzzusatz den Phasenübergang sehr stark. Während die PSPE-Homopolymere nur in Wasser einen Phasenübergang aufweisen, zeigen die PZPE-Homopolymere nur bei hohem Salzgehalt, wie in physiologischer Kochsalzlösung, einen Phasenübergang. Obwohl beide Polyzwitterionen ähnliche chemische Strukturen besitzen und sich nur in der anionischen Gruppe (Sulfonatgruppe in SPE und Sulfatgruppe in ZPE) unterscheiden, ist die Wasserlöslichkeit sehr verschieden. Daher wurden die Phasenübergangstemperaturen der Blockcopolymere durch Verwendung von statistischen Copolymeren aus SPE und ZPE als thermisch-responsivem Block mittels des Verhältnisses von SPE zu ZPE moduliert. Solche statistischen Copolymere P(SPE-co-ZPE) zeigen Phasenübergänge sowohl in Wasser als auch in physiologischer Kochsalzlösung. Darüber hinaus wurde überraschenderweise gefunden, dass PSBE-basierte Blockcopolymer z. T. "schizophrenes" Verhalten in Wasser besitzen, wobei der Trübungspunkt des UCST-Übergangs niedriger als der des LCST-Übergangs liegt. Das Blockcopolymer mPEG114-b-P(SPE43-co-ZPE39) erfüllte am besten die Zielsetzung mit einem Trübungspunkt von 45°C in physiologischer Kochsalzlösung. Deswegen wurde es für Solubilisierungsexperimente verschiedener solvatochromer Farbstoffe als Modelle von Wirkstoffen ausgewählt, wobei die Eignung des thermisch-responsiven Blockcopolymers als "intelligenter" Träger untersucht wurde. Die Aufnahme und Freisetzung der Farbstoffe wurden durch UV-Vis- und Fluoreszenzspektroskopie anhand der Verschiebung der Wellenlänge der Extinktions- oder Emissionsmaxima bei niedriger und hoher Temperatur verfolgt. Diese Temperaturen entsprechen dem aggregierten bzw. gelösten Zustand des Polymeren. Jedoch wurde keine Aufnahme und Freisetzung dieser Farbstoffe durch UCST-Übergang beobachtet. Möglicherweise hängt die schwache Affinität der Polybetaine zu den Farbstoffen in wässrigen Systemen mit den bekannten Antifouling-Eigenschaften von zwitterionischen Polymeren zusammen. KW - block copolymer KW - thermoresponsive KW - polyzwitterion KW - upper critical solution temperature KW - self-assembly KW - Blockcopolymer KW - thermoresponsiv KW - Polyzwitterion KW - obere kritische Lösetemperatur KW - Selbstorganisation Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-412217 ER - TY - JOUR A1 - Noack, Sebastian A1 - Schanzenbach, Dirk A1 - Koetz, Joachim A1 - Schlaad, Helmut T1 - Polylactide-based amphiphilic block copolymers BT - Crystallization-Induced Self-Assembly and Stereocomplexation JF - Macromolecular rapid communications N2 - The aqueous self-assembly behavior of a series of poly(ethylene glycol)-poly(l-/d-lactide) block copolymers and corresponding stereocomplexes is examined by differential scanning calorimetry, dynamic light scattering, and transmission electron microscopy. Block copolymers assemble into spherical micelles and worm-like aggregates at room temperature, whereby the fraction of the latter seemingly increases with decreasing lactide weight fraction or hydrophobicity. The formation of the worm-like aggregates arises from the crystallization of the polylactide by which the spherical micelles become colloidally unstable and fuse epitaxically with other micelles. The self-assembly behavior of the stereocomplex aggregates is found to be different from that of the block copolymers, resulting in rather irregular-shaped clusters of spherical micelles and pearl-necklace-like structures. KW - crystallization KW - polylactide KW - self-assembly KW - stereocomplexation Y1 - 2018 U6 - https://doi.org/10.1002/marc.201800639 SN - 1022-1336 SN - 1521-3927 VL - 40 IS - 1 PB - Wiley-VCH CY - Weinheim ER -