TY - JOUR A1 - Grebenkov, Denis S. A1 - Metzler, Ralf A1 - Oshanin, Gleb A1 - Dagdug, Leonardo A1 - Berezhkovskii, Alexander M. A1 - Skvortsov, Alexei T. T1 - Trapping of diffusing particles by periodic absorbing rings on a cylindrical tube JF - The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr Y1 - 2019 U6 - https://doi.org/10.1063/1.5098390 SN - 0021-9606 SN - 1089-7690 VL - 150 IS - 20 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Teomy, Eial A1 - Metzler, Ralf T1 - Transport in exclusion processes with one-step memory: density dependence and optimal acceleration JF - Journal of physics : A, Mathematical and theoretical N2 - We study a lattice gas of persistent walkers, in which each site is occupied by at most one particle and the direction each particle attempts to move to depends on its last step. We analyse the mean squared displacement (MSD) of the particles as a function of the particle density and their persistence (the tendency to continue moving in the same direction). For positive persistence the MSD behaves as expected: it increases with the persistence and decreases with the density. However, for strong anti-persistence we find two different regimes, in which the dependence of the MSD on the density is non-monotonic. For very strong anti-persistence there is an optimal density at which the MSD reaches a maximum. In an intermediate regime, the MSD as a function of the density exhibits both a minimum and a maximum, a phenomenon which has not been observed before. We derive a mean-field theory which qualitatively explains this behaviour. KW - exclusion process KW - persistence KW - lattice gas Y1 - 2019 U6 - https://doi.org/10.1088/1751-8121/ab37e4 SN - 1751-8113 SN - 1751-8121 VL - 52 IS - 38 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Thapa, Samudrajit A1 - Lukat, Nils A1 - Selhuber-Unkel, Christine A1 - Cherstvy, Andrey G. A1 - Metzler, Ralf T1 - Transient superdiffusion of polydisperse vacuoles in highly motile amoeboid cells JF - The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr N2 - We perform a detailed statistical analysis of diffusive trajectories of membrane-enclosed vesicles (vacuoles) in the supercrowded cytoplasm of living Acanthamoeba castellanii cells. From the vacuole traces recorded in the center-of-area frame of moving amoebae, we examine the statistics of the time-averaged mean-squared displacements of vacuoles, their generalized diffusion coefficients and anomalous scaling exponents, the ergodicity breaking parameter, the non-Gaussian features of displacement distributions of vacuoles, the displacement autocorrelation function, as well as the distributions of speeds and positions of vacuoles inside the amoeba cells. Our findings deliver novel insights into the internal dynamics of cellular structures in these infectious pathogens. Published under license by AIP Publishing. Y1 - 2019 U6 - https://doi.org/10.1063/1.5086269 SN - 0021-9606 SN - 1089-7690 VL - 150 IS - 14 PB - American Institute of Physics CY - Melville ER - TY - GEN A1 - Grebenkov, Denis S. A1 - Metzler, Ralf A1 - Oshanin, Gleb T1 - Strong defocusing of molecular reaction times results from an interplay of geometry and reaction control T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - Textbook concepts of diffusion-versus kinetic-control are well-defined for reaction-kinetics involving macroscopic concentrations of diffusive reactants that are adequately described by rate-constants—the inverse of the mean-first-passage-time to the reaction-event. In contradiction, an open important question is whether the mean-first-passage-time alone is a sufficient measure for biochemical reactions that involve nanomolar reactant concentrations. Here, using a simple yet generic, exactly solvable model we study the effect of diffusion and chemical reaction-limitations on the full reaction-time distribution. We show that it has a complex structure with four distinct regimes delineated by three characteristic time scales spanning a window of several decades. Consequently, the reaction-times are defocused: no unique time-scale characterises the reaction-process, diffusion- and kinetic-control can no longer be disentangled, and it is imperative to know the full reaction-time distribution. We introduce the concepts of geometry- and reaction-control, and also quantify each regime by calculating the corresponding reaction depth. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 527 Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-422989 SN - 1866-8372 IS - 527 ER - TY - JOUR A1 - Krapf, Diego A1 - Metzler, Ralf T1 - Strange interfacial molecular dynamics JF - Physics today Y1 - 2019 U6 - https://doi.org/10.1063/PT.3.4294 SN - 0031-9228 SN - 1945-0699 VL - 72 IS - 9 SP - 48 EP - 54 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Krapf, Diego A1 - Lukat, Nils A1 - Marinari, Enzo A1 - Metzler, Ralf A1 - Oshanin, Gleb A1 - Selhuber-Unkel, Christine A1 - Squarcini, Alessio A1 - Stadler, Lorenz A1 - Weiss, Matthias A1 - Xu, Xinran T1 - Spectral Content of a Single Non-Brownian Trajectory JF - Physical review : X, Expanding access N2 - Time-dependent processes are often analyzed using the power spectral density (PSD) calculated by taking an appropriate Fourier transform of individual trajectories and finding the associated ensemble average. Frequently, the available experimental datasets are too small for such ensemble averages, and hence, it is of a great conceptual and practical importance to understand to which extent relevant information can be gained from S(f, T), the PSD of a single trajectory. Here we focus on the behavior of this random, realization-dependent variable parametrized by frequency f and observation time T, for a broad family of anomalous diffusions-fractional Brownian motion with Hurst index H-and derive exactly its probability density function. We show that S(f, T) is proportional-up to a random numerical factor whose universal distribution we determine-to the ensemble-averaged PSD. For subdiffusion (H < 1/2), we find that S(f, T) similar to A/f(2H+1) with random amplitude A. In sharp contrast, for superdiffusion (H > 1/2) S(f, T) similar to BT2H-1/f(2) with random amplitude B. Remarkably, for H > 1/2 the PSD exhibits the same frequency dependence as Brownian motion, a deceptive property that may lead to false conclusions when interpreting experimental data. Notably, for H > 1/2 the PSD is ageing and is dependent on T. Our predictions for both sub-and superdiffusion are confirmed by experiments in live cells and in agarose hydrogels and by extensive simulations. KW - Biological Physics KW - Interdisciplinary Physics KW - Statistical Physics Y1 - 2019 U6 - https://doi.org/10.1103/PhysRevX.9.011019 SN - 2160-3308 VL - 9 IS - 1 PB - American Physical Society CY - College Park ER - TY - GEN A1 - Sposini, Vittoria A1 - Metzler, Ralf A1 - Oshanin, Gleb T1 - Single-trajectory spectral analysis of scaled Brownian motion T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - Astandard approach to study time-dependent stochastic processes is the power spectral density (PSD), an ensemble-averaged property defined as the Fourier transform of the autocorrelation function of the process in the asymptotic limit of long observation times, T → ∞. In many experimental situations one is able to garner only relatively few stochastic time series of finite T, such that practically neither an ensemble average nor the asymptotic limit T → ∞ can be achieved. To accommodate for a meaningful analysis of such finite-length data we here develop the framework of single-trajectory spectral analysis for one of the standard models of anomalous diffusion, scaled Brownian motion.Wedemonstrate that the frequency dependence of the single-trajectory PSD is exactly the same as for standard Brownian motion, which may lead one to the erroneous conclusion that the observed motion is normal-diffusive. However, a distinctive feature is shown to be provided by the explicit dependence on the measurement time T, and this ageing phenomenon can be used to deduce the anomalous diffusion exponent.Wealso compare our results to the single-trajectory PSD behaviour of another standard anomalous diffusion process, fractional Brownian motion, and work out the commonalities and differences. Our results represent an important step in establishing singletrajectory PSDs as an alternative (or complement) to analyses based on the time-averaged mean squared displacement. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 753 KW - diffusion KW - anomalous diffusion KW - power spectral analysis KW - single trajectory analysis Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-436522 SN - 1866-8372 IS - 753 ER - TY - JOUR A1 - Sposini, Vittoria A1 - Metzler, Ralf A1 - Oshanin, Gleb T1 - Single-trajectory spectral analysis of scaled Brownian motion JF - New Journal of Physics N2 - Astandard approach to study time-dependent stochastic processes is the power spectral density (PSD), an ensemble-averaged property defined as the Fourier transform of the autocorrelation function of the process in the asymptotic limit of long observation times, T → ∞. In many experimental situations one is able to garner only relatively few stochastic time series of finite T, such that practically neither an ensemble average nor the asymptotic limit T → ∞ can be achieved. To accommodate for a meaningful analysis of such finite-length data we here develop the framework of single-trajectory spectral analysis for one of the standard models of anomalous diffusion, scaled Brownian motion.Wedemonstrate that the frequency dependence of the single-trajectory PSD is exactly the same as for standard Brownian motion, which may lead one to the erroneous conclusion that the observed motion is normal-diffusive. However, a distinctive feature is shown to be provided by the explicit dependence on the measurement time T, and this ageing phenomenon can be used to deduce the anomalous diffusion exponent.Wealso compare our results to the single-trajectory PSD behaviour of another standard anomalous diffusion process, fractional Brownian motion, and work out the commonalities and differences. Our results represent an important step in establishing singletrajectory PSDs as an alternative (or complement) to analyses based on the time-averaged mean squared displacement. KW - diffusion KW - anomalous diffusion KW - power spectral analysis KW - single trajectory analysis Y1 - 2019 U6 - https://doi.org/10.1088/1367-2630/ab2f52 SN - 1367-2630 VL - 21 PB - Deutsche Physikalische Gesellschaft ; IOP, Institute of Physics CY - Bad Honnef und London ER - TY - GEN A1 - Ślęzak, Jakub A1 - Burnecki, Krzysztof A1 - Metzler, Ralf T1 - Random coefficient autoregressive processes describe Brownian yet non-Gaussian diffusion in heterogeneous systems T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - Many studies on biological and soft matter systems report the joint presence of a linear mean-squared displacement and a non-Gaussian probability density exhibiting, for instance, exponential or stretched-Gaussian tails. This phenomenon is ascribed to the heterogeneity of the medium and is captured by random parameter models such as ‘superstatistics’ or ‘diffusing diffusivity’. Independently, scientists working in the area of time series analysis and statistics have studied a class of discrete-time processes with similar properties, namely, random coefficient autoregressive models. In this work we try to reconcile these two approaches and thus provide a bridge between physical stochastic processes and autoregressive models.Westart from the basic Langevin equation of motion with time-varying damping or diffusion coefficients and establish the link to random coefficient autoregressive processes. By exploring that link we gain access to efficient statistical methods which can help to identify data exhibiting Brownian yet non-Gaussian diffusion. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 765 KW - diffusion KW - Langevin equation KW - Brownian yet non-Gaussian diffusion KW - diffusing diffusivity KW - superstatistics KW - autoregressive models KW - time series analysis KW - codifference Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-437923 SN - 1866-8372 IS - 765 ER - TY - JOUR A1 - Ślęzak, Jakub A1 - Burnecki, Krzysztof A1 - Metzler, Ralf T1 - Random coefficient autoregressive processes describe Brownian yet non-Gaussian diffusion in heterogeneous systems JF - New Journal of Physics N2 - Many studies on biological and soft matter systems report the joint presence of a linear mean-squared displacement and a non-Gaussian probability density exhibiting, for instance, exponential or stretched-Gaussian tails. This phenomenon is ascribed to the heterogeneity of the medium and is captured by random parameter models such as ‘superstatistics’ or ‘diffusing diffusivity’. Independently, scientists working in the area of time series analysis and statistics have studied a class of discrete-time processes with similar properties, namely, random coefficient autoregressive models. In this work we try to reconcile these two approaches and thus provide a bridge between physical stochastic processes and autoregressive models.Westart from the basic Langevin equation of motion with time-varying damping or diffusion coefficients and establish the link to random coefficient autoregressive processes. By exploring that link we gain access to efficient statistical methods which can help to identify data exhibiting Brownian yet non-Gaussian diffusion. KW - diffusion KW - Langevin equation KW - Brownian yet non-Gaussian diffusion KW - diffusing diffusivity KW - superstatistics KW - autoregressive models KW - time series analysis KW - codifference Y1 - 2019 U6 - https://doi.org/10.1088/1367-2630/ab3366 SN - 1367-2630 VL - 21 PB - Deutsche Physikalische Gesellschaft ; IOP, Institute of Physics CY - Bad Honnef und London ER -