TY - JOUR A1 - Drygala, Frank A1 - Korablev, Nikolay A1 - Ansorge, Hermann A1 - Fickel, Jörns A1 - Isomursu, Marja A1 - Elmeros, Morten A1 - Kowalczyk, Rafal A1 - Baltrunaite, Laima A1 - Balciauskas, Linas A1 - Saarma, Urmas A1 - Schulze, Christoph A1 - Borkenhagen, Peter A1 - Frantz, Alain C. T1 - Homogenous Population Genetic Structure of the Non-Native Raccoon Dog (Nyctereutes procyonoides) in Europe as a Result of Rapid Population Expansion JF - PLoS one N2 - The extent of gene flow during the range expansion of non-native species influences the amount of genetic diversity retained in expanding populations. Here, we analyse the population genetic structure of the raccoon dog (Nyctereutes procyonoides) in north-eastern and central Europe. This invasive species is of management concern because it is highly susceptible to fox rabies and an important secondary host of the virus. We hypothesized that the large number of introduced animals and the species’ dispersal capabilities led to high population connectivity and maintenance of genetic diversity throughout the invaded range. We genotyped 332 tissue samples from seven European countries using 16 microsatellite loci. Different algorithms identified three genetic clusters corresponding to Finland, Denmark and a large ‘central’ population that reached from introduction areas in western Russia to northern Germany. Cluster assignments provided evidence of long-distance dispersal. The results of an Approximate Bayesian Computation analysis supported a scenario of equal effective population sizes among different pre-defined populations in the large central cluster. Our results are in line with strong gene flow and secondary admixture between neighbouring demes leading to reduced genetic structuring, probably a result of its fairly rapid population expansion after introduction. The results presented here are remarkable in the sense that we identified a homogenous genetic cluster inhabiting an area stretching over more than 1500km. They are also relevant for disease management, as in the event of a significant rabies outbreak, there is a great risk of a rapid virus spread among raccoon dog populations. Y1 - 2016 U6 - https://doi.org/10.1371/journal.pone.0153098 SN - 1932-6203 VL - 11 SP - 933 EP - 938 PB - PLoS CY - San Fransisco ER - TY - JOUR A1 - Schmidt, Sabrina A1 - Saxenhofer, Moritz A1 - Drewes, Stephan A1 - Schlegel, Mathias A1 - Wanka, Konrad M. A1 - Frank, Raphael A1 - Klimpel, Sven A1 - von Blanckenhagen, Felix A1 - Maaz, Denny A1 - Herden, Christiane A1 - Freise, Jona A1 - Wolf, Ronny A1 - Stubbe, Michael A1 - Borkenhagen, Peter A1 - Ansorge, Hermann A1 - Eccard, Jana A1 - Lang, Johannes A1 - Jourdain, Elsa A1 - Jacob, Jens A1 - Marianneau, Philippe A1 - Heckel, Gerald A1 - Ulrich, Rainer Günter T1 - High genetic structuring of Tula hantavirus JF - Archives of virology N2 - Tula virus (TULV) is a vole-associated hantavirus with low or no pathogenicity to humans. In the present study, 686 common voles (Microtus arvalis), 249 field voles (Microtus agrestis) and 30 water voles (Arvicola spec.) were collected at 79 sites in Germany, Luxembourg and France and screened by RT-PCR and TULV-IgG ELISA. TULV-specific RNA and/or antibodies were detected at 43 of the sites, demonstrating a geographically widespread distribution of the virus in the studied area. The TULV prevalence in common voles (16.7 %) was higher than that in field voles (9.2 %) and water voles (10.0 %). Time series data at ten trapping sites showed evidence of a lasting presence of TULV RNA within common vole populations for up to 34 months, although usually at low prevalence. Phylogenetic analysis demonstrated a strong genetic structuring of TULV sequences according to geography and independent of the rodent species, confirming the common vole as the preferential host, with spillover infections to co-occurring field and water voles. TULV phylogenetic clades showed a general association with evolutionary lineages in the common vole as assessed by mitochondrial DNA sequences on a large geographical scale, but with local-scale discrepancies in the contact areas. Y1 - 2016 U6 - https://doi.org/10.1007/s00705-016-2762-6 SN - 0304-8608 SN - 1432-8798 VL - 161 SP - 1135 EP - 1149 PB - Springer CY - Wien ER - TY - GEN A1 - Drygala, Frank A1 - Korablev, Nikolay A1 - Ansorge, Hermann A1 - Fickel, Jörns A1 - Isomursu, Marja A1 - Elmeros, Morten A1 - Kowalczyk, Rafał A1 - Baltrunaite, Laima A1 - Balciauskas, Linas A1 - Saarma, Urmas A1 - Schulze, Christoph A1 - Borkenhagen, Peter A1 - Frantz, Alain C. T1 - Homogenous population genetic structure of the non-native raccoon dog (Nyctereutes procyonoides) in Europe as a result of rapid population expansion T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The extent of gene flow during the range expansion of non-native species influences the amount of genetic diversity retained in expanding populations. Here, we analyse the population genetic structure of the raccoon dog (Nyctereutes procyonoides) in north-eastern and central Europe. This invasive species is of management concern because it is highly susceptible to fox rabies and an important secondary host of the virus. We hypothesized that the large number of introduced animals and the species' dispersal capabilities led to high population connectivity and maintenance of genetic diversity throughout the invaded range. We genotyped 332 tissue samples from seven European countries using 16 microsatellite loci. Different algorithms identified three genetic clusters corresponding to Finland, Denmark and a large 'central' population that reached from introduction areas in western Russia to northern Germany. Cluster assignments provided evidence of long-distance dispersal. The results of an Approximate Bayesian Computation analysis supported a scenario of equal effective population sizes among different pre-defined populations in the large central cluster. Our results are in line with strong gene flow and secondary admixture between neighbouring demes leading to reduced genetic structuring, probably a result of its fairly rapid population expansion after introduction. The results presented here are remarkable in the sense that we identified a homogenous genetic cluster inhabiting an area stretching over more than 1500km. They are also relevant for disease management, as in the event of a significant rabies outbreak, there is a great risk of a rapid virus spread among raccoon dog populations. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 540 KW - distance seed dispersial KW - medium-sized carnivores KW - biological invasion KW - Southeast Finland KW - rabies spread KW - F-statistics KW - N-E KW - diversity KW - history KW - colonization Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-410921 SN - 1866-8372 IS - 540 ER -