TY - JOUR A1 - Sborikas, Martynas A1 - Qiu, Xunlin A1 - Wirges, Werner A1 - Gerhard, Reimund A1 - Jenninger, Werner A1 - Lovera, Deliani T1 - Screen printing for producing ferroelectret systems with polymer-electret films and well-defined cavities JF - Applied physics : A, Materials science & processing N2 - We report a process for preparing polymer ferroelectrets by means of screen printing-a technology that is widely used for the two-dimensional patterning of printed layers. In order to produce polymer-film systems with cavities that are suitable for bipolar electric charging, a screen-printing paste is deposited through a screen with a pre-designed pattern onto the surface of a polymer electret film. Another such polymer film is placed on top of the printed pattern, and well-defined cavities are formed in-between. During heating and curing, the polymer films are tightly bonded to the patterned paste layer so that a stable three-layer system is obtained. In the present work, polycarbonate (PC) films have been employed as electret layers. Screen printing, curing and charging led to PC ferroelectret systems with a piezoelectric d (33) coefficient of about 28 pC/N that is stable up to 100 C-a similar to. Due to the rather soft patterned layer, d (33) strongly decreases already for static pressures of tens of kPa. The results demonstrate the suitability of screen printing for the preparation of ferroelectret systems. Y1 - 2014 U6 - https://doi.org/10.1007/s00339-013-7998-3 SN - 0947-8396 SN - 1432-0630 VL - 114 IS - 2 SP - 515 EP - 520 PB - Springer CY - New York ER - TY - JOUR A1 - Qiu, Xunlin A1 - Wirges, Werner A1 - Gerhard, Reimund T1 - Polarization and Hysteresis in Tubular-Channel Fluoroethylenepropylene-Copolymer Ferroelectrets JF - Ferroelectrics N2 - Polarization-vs.-applied-voltage hysteresis curves are recorded on tubular-channel fluoroethylene-propylene (FEP) copolymer ferroelectrets by means of a modified Sawyer-Tower circuit. Dielectric barrier discharges (DBDs) inside the cavities are triggered when the applied voltage is sufficiently high. During the DBDs, the cavities become man-made macroscopic dipoles which build up an effective polarization in the ferroelectret. Therefore, a phenomenological hysteresis curve is observed. From the hysteresis loop, the remanent polarization and the coercive field can be determined. Furthermore, the polarization can be related to the respective piezoelectric coefficient of the ferroelectret. The proposed method is easy to implement and is useful for characterization, further development and optimization of ferro- or piezoelectrets. KW - Ferroelectrets KW - piezoelectrets KW - tubular-channel polymer systems KW - dielectric barrier discharge (DBD) KW - fluoroethylenepropylene (FEP) copolymer KW - piezoelectricity-polarization relation Y1 - 2014 U6 - https://doi.org/10.1080/00150193.2014.964603 SN - 0015-0193 SN - 1563-5112 VL - 472 IS - 1 SP - 100 EP - 109 PB - Routledge, Taylor & Francis Group CY - Abingdon ER - TY - INPR A1 - Hilczer, Börn A1 - Gerhard, Reimund A1 - Scott, James F. T1 - Special Issue of Ferroelectrics in Honor of S. B. Lang T2 - Ferroelectrics Y1 - 2014 U6 - https://doi.org/10.1080/00150193.2014.964099 SN - 0015-0193 SN - 1563-5112 VL - 472 IS - 1 SP - VII EP - VIII PB - Routledge, Taylor & Francis Group CY - Abingdon ER - TY - INPR A1 - Gerhard, Reimund T1 - Sidney Lang - his collaboration with the University of Potsdam T2 - Ferroelectrics Y1 - 2014 U6 - https://doi.org/10.1080/00150193.2014.967090 SN - 0015-0193 SN - 1563-5112 VL - 472 IS - 1 SP - 5 EP - 5 PB - Routledge, Taylor & Francis Group CY - Abingdon ER -