TY - JOUR A1 - Vandewal, Koen A1 - Albrecht, Steve A1 - Hoke, Eric T. A1 - Graham, Kenneth R. A1 - Widmer, Johannes A1 - Douglas, Jessica D. A1 - Schubert, Marcel A1 - Mateker, William R. A1 - Bloking, Jason T. A1 - Burkhard, George F. A1 - Sellinger, Alan A1 - Frechet, Jean M. J. A1 - Amassian, Aram A1 - Riede, Moritz K. A1 - McGehee, Michael D. A1 - Neher, Dieter A1 - Salleo, Alberto T1 - Efficient charge generation by relaxed charge-transfer states at organic interfaces JF - Nature materials N2 - carriers on illumination. Efficient organic solar cells require a high yield for this process, combined with a minimum of energy losses. Here, we investigate the role of the lowest energy emissive interfacial charge-transfer state (CT1) in the charge generation process. We measure the quantum yield and the electric field dependence of charge generation on excitation of the charge-transfer (CT) state manifold viaweakly allowed, low-energy optical transitions. For a wide range of photovoltaic devices based on polymer: fullerene, small-molecule:C-60 and polymer: polymer blends, our study reveals that the internal quantum efficiency (IQE) is essentially independent of whether or not D, A or CT states with an energy higher than that of CT1 are excited. The best materials systems show an IQE higher than 90% without the need for excess electronic or vibrational energy. Y1 - 2014 U6 - https://doi.org/10.1038/NMAT3807 SN - 1476-1122 SN - 1476-4660 VL - 13 IS - 1 SP - 63 EP - 68 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Liu, W. A1 - Tkachov, R. A1 - Komber, H. A1 - Senkovskyy, V. A1 - Schubert, M. A1 - Wei, Z. A1 - Facchetti, A. A1 - Neher, Dieter A1 - Kiriy, A. T1 - Chain-growth polycondensation of perylene diimide-based copolymers: a new route to regio-regular perylene diimide-based acceptors for all-polymer solar cells and n-type transistors JF - Polymer Chemistry N2 - Herein, we report the chain-growth tin-free room temperature polymerization method to synthesize n-type perylene diimide-dithiophene-based conjugated polymers (PPDIT2s) suitable for solar cell and transistor applications. The palladium/electron-rich tri-tert-butylphosphine catalyst is effective to enable the chain-growth polymerization of anion-radical monomer Br-TPDIT-Br/Zn to PPDIT2 with a molecular weight up to M-w approximate to 50 kg mol(-1) and moderate polydispersity. This is the second example of the polymerization of unusual anion-radical aromatic complexes formed in a reaction of active Zn and electron-deficient diimide-based aryl halides. As such, the discovered polymerization method is not a specific reactivity feature of the naphthalene-diimide derivatives but is rather a general polymerization tool. This is an important finding, given the significantly higher maximum external quantum efficiency that can be reached with PDI-based copolymers (32-45%) in all-polymer solar cells compared to NDI-based materials (15-30%). Our studies revealed that PPDIT2 synthesized by the new method and the previously published polymer prepared by step-growth Stille polycondensation show similar electron mobility and all-polymer solar cell performance. At the same time, the polymerization reported herein has several technological advantages as it proceeds relatively fast at room temperature and does not involve toxic tin-based compounds. Because several chain-growth polymerization reactions are well-suited for the preparation of well-defined multi-functional polymer architectures, the next target is to explore the utility of the discovered polymerization in the synthesis of end-functionalized polymers and block copolymers. Such materials would be helpful to improve the nanoscale morphology of polymer blends in all-polymer solar cells. Y1 - 2014 U6 - https://doi.org/10.1039/c3py01707a SN - 1759-9954 SN - 1759-9962 VL - 5 IS - 10 SP - 3404 EP - 3411 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Moule, Adam J. A1 - Neher, Dieter A1 - Turner, Sarah T. ED - Ludwigs, S T1 - P3HT-Based solar cells: structural properties and photovoltaic performance JF - Advances in Polymer Science JF - Advances in Polymer Science N2 - Each year we are bombarded with B.Sc. and Ph.D. applications from students that want to improve the world. They have learned that their future depends on changing the type of fuel we use and that solar energy is our future. The hope and energy of these young people will transform future energy technologies, but it will not happen quickly. Organic photovoltaic devices are easy to sketch, but the materials, processing steps, and ways of measuring the properties of the materials are very complicated. It is not trivial to make a systematic measurement that will change the way other research groups think or practice. In approaching this chapter, we thought about what a new researcher would need to know about organic photovoltaic devices and materials in order to have a good start in the subject. Then, we simplified that to focus on what a new researcher would need to know about poly-3-hexylthiophene: phenyl-C61-butyric acid methyl ester blends (P3HT: PCBM) to make research progress with these materials. This chapter is by no means authoritative or a compendium of all things on P3HT: PCBM. We have selected to explain how the sample fabrication techniques lead to control of morphology and structural features and how these morphological features have specific optical and electronic consequences for organic photovoltaic device applications. KW - Free carrier generation KW - Non-geminate recombination KW - Organic solar cells Y1 - 2014 SN - 978-3-662-45145-8; 978-3-662-45144-1 U6 - https://doi.org/10.1007/12_2014_289 SN - 0065-3195 VL - 265 SP - 181 EP - 232 PB - Springer CY - Berlin ER - TY - JOUR A1 - Foertig, Alexander A1 - Kniepert, Juliane A1 - Gluecker, Markus A1 - Brenner, Thomas J. K. A1 - Dyakonov, Vladimir A1 - Neher, Dieter A1 - Deibel, Carsten T1 - Nongeminate and geminate recombination in PTB7: PCBM solar cells JF - Advanced functional materials KW - organic semiconductors KW - organic solar cells KW - conjugated polymers KW - charge carrier recombination Y1 - 2014 U6 - https://doi.org/10.1002/adfm.201302134 SN - 1616-301X SN - 1616-3028 VL - 24 IS - 9 SP - 1306 EP - 1311 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Steyrleuthner, Robert A1 - Di Pietro, Riccardo A1 - Collins, Brian A. A1 - Polzer, Frank A1 - Himmelberger, Scott A1 - Schubert, Marcel A1 - Chen, Zhihua A1 - Zhang, Shiming A1 - Salleo, Alberto A1 - Ade, Harald W. A1 - Facchetti, Antonio A1 - Neher, Dieter T1 - The Role of Regioregularity, Crystallinity, and Chain Orientation on Electron Transport in a High-Mobility n-Type Copolymer JF - Journal of the American Chemical Society Y1 - 2014 U6 - https://doi.org/10.1021/ja4118736 SN - 0002-7863 VL - 136 IS - 11 SP - 4245 EP - 4256 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Albrecht, Steve A1 - Vandewal, Koen A1 - Tumbleston, John R. A1 - Fischer, Florian S. U. A1 - Douglas, Jessica D. A1 - Frechet, Jean M. J. A1 - Ludwigs, Sabine A1 - Ade, Harald W. A1 - Salleo, Alberto A1 - Neher, Dieter T1 - On the efficiency of charge transfer state splitting in polymer: Fullerene solar cells JF - Advanced materials KW - organic solar cells KW - charge generation KW - geminate recombination KW - charge transfer states KW - driving force KW - excess energy KW - morphology KW - spectroelectrochemistry Y1 - 2014 U6 - https://doi.org/10.1002/adma.201305283 SN - 0935-9648 SN - 1521-4095 VL - 26 IS - 16 SP - 2533 EP - 2539 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Albrecht, Steve A1 - Tumbleston, John R. A1 - Janietz, Silvia A1 - Dumsch, Ines A1 - Allard, Sybille A1 - Scherf, Ullrich A1 - Ade, Harald W. A1 - Neher, Dieter T1 - Quantifying charge extraction in organic solar cells: The case of fluorinated PCPDTBT JF - The journal of physical chemistry letters N2 - We introduce a new and simple method to quantify the effective extraction mobility in organic solar cells at low electric fields and charge carrier densities comparable to operation conditions under one sun illumination. By comparing steady-state carrier densities at constant illumination intensity and under open-circuit conditions, the gradient of the quasi-Fermi potential driving the current is estimated as a function of external bias and charge density. These properties are then related to the respective steady-state current to determine the effective extraction mobility. The new technique is applied to different derivatives of the well-known low-band-gap polymer PCPDTBT blended with PC70BM. We show that the slower average extraction due to lower mobility accounts for the moderate fill factor when solar cells are fabricated with mono- or difluorinated PCPDTBT. This lower extraction competes with improved generation and reduced nongeminate recombination, rendering the monofluorinated derivative the most efficient donor polymer. Y1 - 2014 U6 - https://doi.org/10.1021/jz500457b SN - 1948-7185 VL - 5 IS - 7 SP - 1131 EP - 1138 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Shalom, Menny A1 - Inal, Sahika A1 - Neher, Dieter A1 - Antonietti, Markus T1 - SiO2/carbon nitride composite materials: The role of surfaces for enhanced photocatalysis JF - Catalysis today : a serial publication dealing with topical themes in catalysis and related subjects N2 - The effect of SiO2 nanoparticles on carbon nitride (C3N4) photoactivity performance is described. The composite SiO2-C3N4 materials exhibit a higher activity in the photo degradation of RhB dye. A detailed analysis of the chemical and optical properties of the composite C3N4 materials shows that the photo activity increases with higher SiO2 concentration. We found out that the presence of SiO2 nanoparticles strongly affects the fluorescence intensity of the matrix and life time by the creation of new energy states for charge transfer within the C3N4. Furthermore, the use of SiO2 in the synthesis of C3N4 leads to new morphology with higher surface area which results in another, secondary improvement of C3N4 photoactivity. The effect of different surfaces within C3N4 on its chemical and electronic properties is discussed and a tentative mechanism is proposed. The utilization of SiO2 nanoparticles improves both photophysical and chemical properties of C3N4 and opens new possibilities for further enhancement of C3N4 catalytic properties by the formation of composites with many other materials. KW - Carbon nitride KW - SiO2 composite material KW - Photocatalysis KW - RhB degradation Y1 - 2014 U6 - https://doi.org/10.1016/j.cattod.2013.12.013 SN - 0920-5861 SN - 1873-4308 VL - 225 SP - 185 EP - 190 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Pradhan, Basudev A1 - Albrecht, Steve A1 - Stiller, Burkhard A1 - Neher, Dieter T1 - Inverted organic solar cells comprising low-temperature-processed ZnO films JF - Applied physics : A, Materials science & processing N2 - Inverted organic solar cells are fabricated using low-temperature-annealed ZnO film as an electron transport layer. Uniform ZnO films were prepared by spin coating a diethylzinc (DEZ) precursor solution in air, followed by annealing at 100 A degrees C. Organic solar cells prepared on these ZnO films with a 1:1 P3HT:PCBM blend as the active layer show a high power conversion efficiency of 4.03 %, which is more than 10 % higher than the PCE of solar cells comprising ZnO prepared via a high-temperature sol-gel route. Y1 - 2014 U6 - https://doi.org/10.1007/s00339-014-8373-8 SN - 0947-8396 SN - 1432-0630 VL - 115 IS - 2 SP - 365 EP - 369 PB - Springer CY - New York ER - TY - JOUR A1 - Kniepert, Juliane A1 - Lange, Ilja A1 - van der Kaap, Niels J. A1 - Koster, L. Jan Anton A1 - Neher, Dieter T1 - A conclusive view on charge generation, recombination, and extraction in As-prepared and annealed P3HT:PCBM blends: combined experimental and simulation work JF - dvanced energy materials N2 - Time-delayed collection field (TDCF) and bias-amplified charge extraction (BACE) are applied to as-prepared and annealed poly(3-hexylthiophene):[6,6]-phenyl C-71 butyric acid methyl ester (P3HT:PCBM) blends coated from chloroform. Despite large differences in fill factor, short-circuit current, and power conversion efficiency, both blends exhibit a negligible dependence of photogeneration on the electric field and strictly bimolecular recombination (BMR) with a weak dependence of the BMR coefficient on charge density. Drift-diffusion simulations are performed using the measured coefficients and mobilities, taking into account bimolecular recombination and the possible effects of surface recombination. The excellent agreement between the simulation and the experimental data for an intensity range covering two orders of magnitude indicates that a field-independent generation rate and a density-independent recombination coefficient describe the current-voltage characteristics of the annealed P3HT: PCBM devices, while the performance of the as-prepared blend is shown to be limited by space charge effects due to a low hole mobility. Finally, even though the bimolecular recombination coefficient is small, surface recombination is found to be a negligible loss mechanism in these solar cells. Y1 - 2014 U6 - https://doi.org/10.1002/aenm.201301401 SN - 1614-6832 SN - 1614-6840 VL - 4 IS - 7 PB - Wiley-VCH CY - Weinheim ER -