TY - JOUR A1 - Wiemann, Dirk T1 - George, Rosemary Marangoly, Indian English and the Fiction of National Literature / [rezensiert von] Dirk Wiemann JF - Zeitschrift für Anglistik und Amerikanistik : ZAA ; a quarterly of language, literature and culture N2 - Rezensiertes Werk George, Rosemary Marangoly, Indian English and the Fiction of National Literature - Cambridge: Cambridge University Press, 2013. - Hb. viii, 285 pp. - (Zeitschrift für Anglistik und Amerikanistik ; 62(4)) ISBN 978-1-107-04000-7. Y1 - 2014 U6 - https://doi.org/10.1515/zaa-2014-0039 SN - 0044-2305 SN - 2196-4726 VL - 62 IS - 4 SP - 385 EP - 388 PB - DeGruyter CY - Tübingen ER - TY - JOUR A1 - von Websky, Karoline A1 - Reichetzeder, Christoph A1 - Hocher, Berthold T1 - Physiology and pathophysiology of incretins in the kidney JF - Current opinion in nephrology and hypertension : reviews of all advances, evaluations of key references, comprehensive listing of papers N2 - Purpose of reviewIncretin-based therapy with glucagon-like peptide-1 receptor (GLP-1R) agonists and dipeptidyl peptidase-4 (DPP-4) inhibitors is considered a promising therapeutic option for type 2 diabetes mellitus. Cumulative evidence, mainly from preclinical animal studies, reveals that incretin-based therapies also may elicit beneficial effects on kidney function. This review gives an overview of the physiology, pathophysiology, and pharmacology of the renal incretin system.Recent findingsActivation of GLP-1R in the kidney leads to diuretic and natriuretic effects, possibly through direct actions on renal tubular cells and sodium transporters. Moreover, there is evidence that incretin-based therapy reduces albuminuria, glomerulosclerosis, oxidative stress, and fibrosis in the kidney, partially through GLP-1R-independent pathways. Molecular mechanisms by which incretins exert their renal effects are understood incompletely, thus further studies are needed.SummaryThe GLP-1R and DPP-4 are expressed in the kidney in various species. The kidney plays an important role in the excretion of incretin metabolites and most GLP-1R agonists and DPP-4 inhibitors, thus special attention is required when applying incretin-based therapy in renal impairment. Preclinical observations suggest direct renoprotective effects of incretin-based therapies in the setting of hypertension and other disorders of sodium retention, as well as in diabetic and nondiabetic nephropathy. Clinical studies are needed in order to confirm translational relevance from preclinical findings for treatment options of renal diseases. KW - DDP-4 inhibition KW - diabetes KW - diabetic nephropathy KW - GLP-1 receptor KW - hypertension KW - incretins KW - kidney KW - renal impairment Y1 - 2014 U6 - https://doi.org/10.1097/01.mnh.0000437542.77175.a0 SN - 1062-4821 SN - 1473-6543 VL - 23 IS - 1 SP - 54 EP - 60 PB - Lippincott Williams & Wilkins CY - Philadelphia ER - TY - JOUR A1 - Cencil, Ugo A1 - Nitschke, Felix A1 - Steup, Martin A1 - Minassian, Berge A. A1 - Colleoni, Christophe A1 - Ball, Steven G. T1 - Transition from glycogen to starch metabolism in Archaeplastida JF - Trends in plant science N2 - In this opinion article we propose a scenario detailing how two crucial components have evolved simultaneously to ensure the transition of glycogen to starch in the cytosol of the Archaeplastida last common ancestor: (i) the recruitment of an enzyme from intracellular Chlamydiae pathogens to facilitate crystallization of alpha-glucan chains; and (ii) the evolution of novel types of polysaccharide (de)phosphorylating enzymes from preexisting glycogen (de)phosphorylation host pathways to allow the turnover of such crystals. We speculate that the transition to starch benefitted Archaeplastida in three ways: more carbon could be packed into osmotically inert material; the host could resume control of carbon assimilation from the chlamydial pathogen that triggered plastid endosymbiosis; and cyanobacterial photosynthate export could be integrated in the emerging Archaeplastida. KW - evolution of plastids KW - starch and glycogen metabolism KW - polyglucan debranching reactions KW - starch and glycogen (de)phosphorylation KW - Chlamydia-like bacteria KW - Lafora disease Y1 - 2014 U6 - https://doi.org/10.1016/j.tplants.2013.08.004 SN - 1360-1385 VL - 19 IS - 1 SP - 18 EP - 28 PB - Elsevier CY - London ER - TY - JOUR A1 - Scheller, Henrik T1 - Political parties and public policy in the German Lander - When parties matter JF - Party politics : an international journal for the study of political parties and political organizations Y1 - 2014 U6 - https://doi.org/10.1177/1354068813510632 SN - 1354-0688 SN - 1460-3683 VL - 20 IS - 1 SP - 147 EP - 148 PB - Sage Publ. CY - London ER - TY - JOUR A1 - Troppmann, Britta A1 - Balfanz, Sabine A1 - Krach, Christian A1 - Baumann, Arnd A1 - Blenau, Wolfgang T1 - Characterization of an Invertebrate-Type Dopamine Receptor of the American Cockroach, Periplaneta americana JF - International journal of molecular sciences N2 - We have isolated a cDNA coding for a putative invertebrate-type dopamine receptor (Peadop2) from P. americana brain by using a PCR-based strategy. The mRNA is present in samples from brain and salivary glands. We analyzed the distribution of the PeaDOP2 receptor protein with specific affinity-purified polyclonal antibodies. On Western blots, PeaDOP2 was detected in protein samples from brain, subesophageal ganglion, thoracic ganglia, and salivary glands. In immunocytochemical experiments, we detected PeaDOP2 in neurons with their somata being located at the anterior edge of the medulla bilaterally innervating the optic lobes and projecting to the ventro-lateral protocerebrum. In order to determine the functional and pharmacological properties of the cloned receptor, we generated a cell line constitutively expressing PeaDOP2. Activation of PeaDOP2-expressing cells with dopamine induced an increase in intracellular cAMP. In contrast, a C-terminally truncated splice variant of this receptor did not exhibit any functional property by itself. The molecular and pharmacological characterization of the first dopamine receptor from P. americana provides the basis for forthcoming studies focusing on the significance of the dopaminergic system in cockroach behavior and physiology. KW - G-protein-coupled receptor KW - dopamine KW - insect KW - cellular signaling KW - salivary gland KW - biogenic amine Y1 - 2014 U6 - https://doi.org/10.3390/ijms15010629 SN - 1422-0067 VL - 15 IS - 1 SP - 629 EP - 653 PB - MDPI CY - Basel ER - TY - JOUR A1 - Winkler, Roland G. A1 - Cherstvy, Andrey G. ED - Muller, M. T1 - Strong and weak polyelectrolyte adsorption onto oppositely charged curved surfaces JF - Advances in polymer science JF - Advances in Polymer Science N2 - Polyelectrolytes are macromolecules composed of charged monomers and exhibit unique properties due to the interplay of their flexibility and electrostatic interactions. In solution, they are attracted to oppositely charged surfaces and interfaces and exhibit a transition to an adsorbed state when certain conditions are met concerning the charge densities of the polymer and surface and the properties of the solution. In this review, we discuss two limiting cases for adsorption of flexible polyelectrolytes on curved surfaces: weak and strong adsorption. In the first case, adsorption is strongly influenced by the entropic degrees of freedom of a flexible polyelectrolyte. By contrast, in the strong adsorption limit, electrostatic interactions dominate, which leads to particular adsorption patterns, specifically on spherical surfaces. We discuss the corresponding theoretical approaches, applying a mean-field description for the polymer and the polymer-surface interaction. For weak adsorption, we discuss the critical adsorption behavior by exactly solvable models for planar and spherical geometries and a generic approximation scheme, which is additionally applied to cylindrical surfaces. For strong adsorption, we investigate various polyelectrolyte patterns on cylinders and spheres and evaluate their stability. The results are discussed in the light of experimental results, mostly of DNA adsorption experiments. Y1 - 2014 SN - 978-3-642-40734-5; 978-3-642-40733-8 U6 - https://doi.org/10.1007/12_2012_183 SN - 0065-3195 VL - 255 SP - 1 EP - 56 PB - Springer CY - Berlin ER - TY - JOUR A1 - Kreienbrink, Anja T1 - Complex media systems: on the role of literature in the journal "East and West" (1901 - 1923) JF - Zeitschrift für Germanistik Y1 - 2014 SN - 0323-7982 VL - 24 IS - 3 SP - 673 EP - 674 PB - Lang CY - Bern ER - TY - JOUR A1 - Kürbis, Holger T1 - Stefanie Freyer: The Weimar court around 1800. A social history beyond the Myth JF - Deutsche Zeitschrift für Geschichtswissenschaft Y1 - 2014 SN - 0044-2828 SN - 1618-0372 VL - 62 IS - 7-8 SP - 661 EP - 663 PB - Metropol-Verl. CY - Berlin ER - TY - JOUR A1 - Land-Hilbert, Stefanie T1 - Massacre Street JF - British journal of Canadian studies Y1 - 2014 SN - 0269-9222 SN - 1757-8078 VL - 27 IS - 2 SP - 256 EP - 257 PB - Liverpool Univ. Press CY - Liverpool ER - TY - JOUR A1 - Fayyaz, Susann A1 - Japtok, Lukasz A1 - Kleuser, Burkhard T1 - Divergent role of sphingosine 1-Phosphate on insulin resistance JF - Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry and pharmacology N2 - Insulin resistance is a complex metabolic disorder in which insulin-sensitive tissues fail to respond to the physiological action of insulin. There is a strong correlation of insulin resistance and the development of type 2 diabetes both reaching epidemic proportions. Dysfunctional lipid metabolism is a hallmark of insulin resistance and a risk factor for several cardiovascular and metabolic disorders. Numerous studies in humans and rodents have shown that insulin resistance is associated with elevations of non-esterified fatty acids (NEFA) in the plasma. Moreover, bioactive lipid intermediates such as diacylglycerol (DAG) and ceramides appear to accumulate in response to NEFA, which may interact with insulin signaling. However, recent work has also indicated that sphingosine 1-phosphate (S1P), a breakdown product of ceramide, modulate insulin signaling in different cell types. In this review, we summarize the current state of knowledge about S1P and insulin signaling in insulin sensitive cells. A specific focus is put on the action of S1P on hepatocytes, pancreatic beta-cells and skeletal muscle cells. In particular, modulation of S1P-signaling can be considered as a potential therapeutic target for the treatment of insulin resistance and type 2 diabetes. KW - Sphingosine 1-phosphate (S1P) KW - Insulin resistance KW - Ceramides KW - Diacylglycerol (DAG) KW - Non-esterified fatty acids (NEFA) KW - Hepatocytes KW - Pancreatic cells KW - Skeletal muscle cells Y1 - 2014 U6 - https://doi.org/10.1159/000362990 SN - 1015-8987 SN - 1421-9778 VL - 34 IS - 1 SP - 134 EP - 147 PB - Karger CY - Basel ER -