TY - JOUR A1 - Aberle-Malzahn, Nicole A1 - Bauer, Barbara A1 - Lewandowska, A. A1 - Gaedke, Ursula A1 - Sommer, U. T1 - Warming induces shifts in microzooplankton phenology and reduces time-lags between phytoplankton and protozoan production JF - Marine biology : international journal on life in oceans and coastal waters N2 - Indoor mesocosm experiments were conducted to test for potential climate change effects on the spring succession of Baltic Sea plankton. Two different temperature (Delta 0 A degrees C and Delta 6 A degrees C) and three light scenarios (62, 57 and 49 % of the natural surface light intensity on sunny days), mimicking increasing cloudiness as predicted for warmer winters in the Baltic Sea region, were simulated. By combining experimental and modeling approaches, we were able to test for a potential dietary mismatch between phytoplankton and zooplankton. Two general predator-prey models, one representing the community as a tri-trophic food chain and one as a 5-guild food web were applied to test for the consequences of different temperature sensitivities of heterotrophic components of the plankton. During the experiments, we observed reduced time-lags between the peaks of phytoplankton and protozoan biomass in response to warming. Microzooplankton peak biomass was reached by 2.5 day A degrees C-1 earlier and occurred almost synchronously with biomass peaks of phytoplankton in the warm mesocosms (Delta 6 A degrees C). The peak magnitudes of microzooplankton biomass remained unaffected by temperature, and growth rates of microzooplankton were higher at Delta 6 A degrees C (mu(a dagger 0 A degrees C) = 0.12 day(-1) and mu(a dagger 6 A degrees C) = 0.25 day(-1)). Furthermore, warming induced a shift in microzooplankton phenology leading to a faster species turnover and a shorter window of microzooplankton occurrence. Moderate differences in the light levels had no significant effect on the time-lags between autotrophic and heterotrophic biomass and on the timing, biomass maxima and growth rate of microzooplankton biomass. Both models predicted reduced time-lags between the biomass peaks of phytoplankton and its predators (both microzooplankton and copepods) with warming. The reduction of time-lags increased with increasing Q(10) values of copepods and protozoans in the tritrophic food chain. Indirect trophic effects modified this pattern in the 5-guild food web. Our study shows that instead of a mismatch, warming might lead to a stronger match between protist grazers and their prey altering in turn the transfer of matter and energy toward higher trophic levels. Y1 - 2012 U6 - https://doi.org/10.1007/s00227-012-1947-0 SN - 0025-3162 VL - 159 IS - 11 SP - 2441 EP - 2453 PB - Springer CY - New York ER - TY - THES A1 - Alkatib, Sibah T1 - Further insights into plastid tRNA and reading of the genetic code in Nicotiana tabacum and Analysis of plastid ribosomal proteins in nicotiana tabacum Y1 - 2012 CY - Potsdam ER - TY - JOUR A1 - Andorf, Sandra A1 - Meyer, Rhonda C. A1 - Selbig, Joachim A1 - Altmann, Thomas A1 - Repsilber, Dirk T1 - Integration of a systems biological network analysis and QTL results for biomass heterosis in arabidopsis thaliana JF - PLoS one N2 - To contribute to a further insight into heterosis we applied an integrative analysis to a systems biological network approach and a quantitative genetics analysis towards biomass heterosis in early Arabidopsis thaliana development. The study was performed on the parental accessions C24 and Col-0 and the reciprocal crosses. In an over-representation analysis it was tested if the overlap between the resulting gene lists of the two approaches is significantly larger than expected by chance. Top ranked genes in the results list of the systems biological analysis were significantly over-represented in the heterotic QTL candidate regions for either hybrid as well as regarding mid-parent and best-parent heterosis. This suggests that not only a few but rather several genes that influence biomass heterosis are located within each heterotic QTL region. Furthermore, the overlapping resulting genes of the two integrated approaches were particularly enriched in biomass related pathways. A chromosome-wise over-representation analysis gave rise to the hypothesis that chromosomes number 2 and 4 probably carry a majority of the genes involved in biomass heterosis in the early development of Arabidopsis thaliana. Y1 - 2012 U6 - https://doi.org/10.1371/journal.pone.0049951 SN - 1932-6203 VL - 7 IS - 11 PB - PLoS CY - San Fransisco ER - TY - THES A1 - Andres, Dorothee T1 - Biophysical chemistry of lipopolysaccharide specific bacteriophages T1 - Biophysikalische Chemie der Lipopolysaccharid spezifischen Bakteriophagen N2 - Carbohydrate recognition is a ubiquitous principle underlying many fundamental biological processes like fertilization, embryogenesis and viral infections. But how carbohydrate specificity and affinity induce a molecular event is not well understood. One of these examples is bacteriophage P22 that binds and infects three distinct Salmonella enterica (S.) hosts. It recognizes and depolymerizes repetitive carbohydrate structures of O antigen in its host´s outer membrane lipopolysaccharide molecule. This is mediated by tailspikes, mainly β helical appendages on phage P22 short non contractile tail apparatus (podovirus). The O antigen of all three Salmonella enterica hosts is built from tetrasaccharide repeating units consisting of an identical main chain with a distinguished 3,6 dideoxyhexose substituent that is crucial for P22 tailspike recognition: tyvelose in S. Enteritidis, abequose in S. Typhimurium and paratose in S. Paratyphi. In the first study the complexes of P22 tailspike with its host’s O antigen octasaccharide were characterized. S. Paratyphi octasaccharide binds less tightly (ΔΔG≈7 kJ/mol) to the tailspike than the other two hosts. Crystal structure analysis of P22 tailspike co crystallized with S. Paratyphi octasaccharides revealed different interactions than those observed before in tailspike complexes with S. Enteritidis and S. Typhimurium octasaccharides. These different interactions occur due to a structural rearrangement in the S. Paratyphi octasaccharide. It results in an unfavorable glycosidic bond Φ/Ψ angle combination that also had occurred when the S. Paratyphi octasaccharide conformation was analyzed in an aprotic environment. Contributions of individual protein surface contacts to binding affinity were analyzed showing that conserved structural waters mediate specific recognition of all three different Salmonella host O antigens. Although different O antigen structures possess distinct binding behavior on the tailspike surface, all are recognized and infected by phage P22. Hence, in a second study, binding measurements revealed that multivalent O antigen was able to bind with high avidity to P22 tailspike. Dissociation rates of the polymer were three times slower than for an octasaccharide fragment pointing towards high affinity for O antigen polysaccharide. Furthermore, when phage P22 was incubated with lipopolysaccharide aggregates before plating on S. Typhimurium cells, P22 infectivity became significantly reduced. Therefore, in a third study, the function of carbohydrate recognition on the infection process was characterized. It was shown that large S. Typhimurium lipopolysaccharide aggregates triggered DNA release from the phage capsid in vitro. This provides evidence that phage P22 does not use a second receptor on the Salmonella surface for infection. P22 tailspike binding and cleavage activity modulate DNA egress from the phage capsid. DNA release occurred more slowly when the phage possessed mutant tailspikes with less hydrolytic activity and was not induced if lipopolysaccharides contained tailspike shortened O antigen polymer. Furthermore, the onset of DNA release was delayed by tailspikes with reduced binding affinity. The results suggest a model for P22 infection induced by carbohydrate recognition: tailspikes position the phage on Salmonella enterica and their hydrolytic activity forces a central structural protein of the phage assembly, the plug protein, onto the host´s membrane surface. Upon membrane contact, a conformational change has to occur in the assembly to eject DNA and pilot proteins from the phage to establish infection. Earlier studies had investigated DNA ejection in vitro solely for viruses with long non contractile tails (siphovirus) recognizing protein receptors. Podovirus P22 in this work was therefore the first example for a short tailed phage with an LPS recognition organelle that can trigger DNA ejection in vitro. However, O antigen binding and cleaving tailspikes are widely distributed in the phage biosphere, for example in siphovirus 9NA. Crystal structure analysis of 9NA tailspike revealed a complete similar fold to P22 tailspike although they only share 36 % sequence identity. Moreover, 9NA tailspike possesses similar enzyme activity towards S. Typhimurium O antigen within conserved amino acids. These are responsible for a DNA ejection process from siphovirus 9NA triggered by lipopolysaccharide aggregates. 9NA expelled its DNA 30 times faster than podovirus P22 although the associated conformational change is controlled with a similar high activation barrier. The difference in DNA ejection velocity mirrors different tail morphologies and their efficiency to translate a carbohydrate recognition signal into action. N2 - Kohlenhydraterkennung ist ein fundamentales Prinzip vieler biologischer Prozesse wie z.B. Befruchtung, Embryogenese und virale Infektionen. Wie aber Kohlenhydratspezifität und –affinität in ein molekulares Ereignis übersetzt werden, ist nicht genau verstanden. Ein Beispiel für ein solches Ereignis ist die Infektion des Bakteriophage P22, der drei verschiedene Salmonella enterica (S.) Wirte besitzt. Er erkennt und depolymerisiert die repetitiven Einheiten des O Antigens im Lipopolysaccharid, das sich in der äußeren Membran seines Wirtes befindet. Dieser Schritt wird durch die Tailspikes vermittelt, β helicale Bestandteile des kurzen, nicht kontraktilen Schwanzapparates von P22 (Podovirus). Das O Antigen aller drei Salmonella enterica Wirte besteht aus sich wiederholenden Tetrasacchariden. Sie enthalten die gleiche Hauptkette aber eine spezifische 3,6 Didesoxyhexose Seitenkette, die für die P22 Tailspikeerkennung essentiell ist: Tyvelose in S. Enteritidis, Abequose in S. Typhimurium und Paratose in S. Paratyphi. Im ersten Teil der Arbeit wurde die Komplexbildung von P22 Tailspike mit O Antigen Octasaccharidfragmenten der drei verschiedenen Wirte untersucht. S. Paratyphi Octasaccharide binden mit einer geringeren Affinität (ΔΔG≈7 kJ/mol) an den Tailspike als die beiden anderen Wirte. Die Kristallstrukturanalyse des S. Paratyphi Octasaccharides komplexiert mit P22 Tailspike offenbarten unterschiedliche Interkationen als vorher mit S. Enteritidis und S. Typhimurium Oktasaccharidkomplexen mit Tailspike beobachtet wurden. Diese unterschiedlichen Interaktionen beruhen auf einer strukturellen Änderung in den Φ/Ψ Winkeln der glykosidischen Bindung. Die Beiträge von verschiedenen Proteinoberflächenkontakten zur Affnität wurden untersucht und zeigten, dass konservierte Wasser in der Struktur die spezifische Erkennung aller drei Salmonella Wirte vermittelt. Obwohl die verschiedenen O Antigen Strukturen unterschiedliches Bindungsverhalten auf der Tailspikeoberfläche zeigen, werden alle vom Phagen P22 erkannt und infiziert. Daher wurde in einer zweiten Studie die multivalente Bindung zwischen P22 Tailspike und O Antigen charakterisiert. Die Dissoziationskonstanten des Polymers waren drei Mal langsamer als für das Oktasaccharid allein, was auf eine hohe Affinität des O Antigens schließen lässt. Zusätzlich wurde gezeigt, dass die Aggregate des Lipopolysaccharids in der Lage sind, die Infektiösität vom P22 Phagen zu reduzieren. Ausgehend davon wurde in einer dritten Studie die Bedeutung der Kohlenhydrat Erkennung auf den Infektionsprozess untersucht. Große S. Typhimurium Lipopolysaccharide Aggregate bewirkten die DNA Freisetzung vom P22 Kapsid. Dies deutet darauf, dass der P22 Phage keinen weiteren Rezeptor für die Infektion auf der Oberflächen seines Wirtes verwendet. Zusätzlich moduliert die P22 Tailspike Aktivität den Ausstoss der DNA vom P22 Phagen: Er ist langsamer, wenn der Phage Tailspikes besitzt, die weniger hydrolytisch aktiv sind und wurde nicht induziert, wenn Lipopolysaccharid eingesetzt wurde, dass zuvor mit Tailspike hydrolysiert wurde. Darüber hinaus wurde der Start der DNA Ejektion verzögert, wenn Tailspikes mit verminderter Affinität am Phagen vorhanden waren. Die Ergebnisse führten zu einem Modell für die Infektion von P22: Tailspikes positionieren den Phagen auf Salmonella enterica und ihre Aktivität drückt ein zentrales Strukturprotein des Phagen, das Stöpselprotein, auf die Membranoberfläche. Aufgrund des Membrankontaktes findet eine Konformationsänderung statt die zur Ejektion der Pilotproteine und zur Infektion führt. Vorhergehende Studien haben bisher nur die DNA Ejektion in vitro für Viren mit langen, nicht kontraktilen Schwänzen (Siphoviren) mit Proteinrezeptoren untersucht. In dieser Arbeit wurde das erste Mal die DNA Ejektion für einen Podovirus mit LPS Erkennung in vitro gezeigt. Die O Antigen Erkennung und Spaltung durch Tailspikeproteine gibt es häufig in der Phagenbiosphere, z.B. am Siphovirus 9NA. Die Kristallstrukturanalyse von 9NA Tailspike zeigt eine komplett gleiche Struktur, obwohl beide Proteine nur zu 36% Sequenzidentität besitzen. Zusätzlich hat 9NA Tailspike ähnliche enzymatische Eigenschaften. Diese ist für den DNA Ejektionsprozess im Siphovirus 9NA verantwortlich, der auch durch LPS Agreggate induziert wird. 9NA stößt dabei seine DNA 30 Mal schneller aus als Podovirus P22 obwohl die damit verbundene Konformationsänderung mit einer ähnlich hohen Aktivierungsbarriere kontrolliert wird. Daher spiegeln die Unterschiede in der DNA Ejektionsgeschwindigkeit der verschiedenen Tailmorphologien die Effezienz wieder, mit der die spezifische Kohlenhydraterkennung in ein Signal umgewandelt wird. KW - DNA Ejektion KW - Kohlenhydrat Erkennung KW - Phagen Infektion KW - Tailspike KW - Salmonella KW - DNA ejection KW - carbohydrate recognition KW - phage infection KW - tailspike KW - salmonella Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-59261 ER - TY - JOUR A1 - Andres, Dorothee A1 - Roske, Yvette A1 - Doering, Carolin A1 - Heinemann, Udo A1 - Seckler, Robert A1 - Barbirz, Stefanie T1 - Tail morphology controls DNA release in two Salmonella phages with one lipopolysaccharide receptor recognition system JF - Molecular microbiology N2 - Bacteriophages use specific tail proteins to recognize host cells. It is still not understood to molecular detail how the signal is transmitted over the tail to initiate infection. We have analysed in vitro DNA ejection in long-tailed siphovirus 9NA and short-tailed podovirus P22 upon incubation with Salmonella typhimurium lipopolysaccharide (LPS). We showed for the first time that LPS alone was sufficient to elicit DNA release from a siphovirus in vitro. Crystal structure analysis revealed that both phages use similar tailspike proteins for LPS recognition. Tailspike proteins hydrolyse LPS O antigen to position the phage on the cell surface. Thus we were able to compare in vitro DNA ejection processes from two phages with different morphologies with the same receptor under identical experimental conditions. Siphovirus 9NA ejected its DNA about 30 times faster than podovirus P22. DNA ejection is under control of the conformational opening of the particle and has a similar activation barrier in 9NA and P22. Our data suggest that tail morphology influences the efficiencies of particle opening given an identical initial receptor interaction event. Y1 - 2012 U6 - https://doi.org/10.1111/j.1365-2958.2012.08006.x SN - 0950-382X VL - 83 IS - 6 SP - 1244 EP - 1253 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Araujo, Wagner L. A1 - Nunes-Nesi, Adriano A1 - Nikoloski, Zoran A1 - Sweetlove, Lee J. A1 - Fernie, Alisdair R. T1 - Metabolic control and regulation of the tricarboxylic acid cycle in photosynthetic and heterotrophic plant tissues JF - Plant, cell & environment : cell physiology, whole-plant physiology, community physiology N2 - The tricarboxylic acid (TCA) cycle is a crucial component of respiratory metabolism in both photosynthetic and heterotrophic plant organs. All of the major genes of the tomato TCA cycle have been cloned recently, allowing the generation of a suite of transgenic plants in which the majority of the enzymes in the pathway are progressively decreased. Investigations of these plants have provided an almost complete view of the distribution of control in this important pathway. Our studies suggest that citrate synthase, aconitase, isocitrate dehydrogenase, succinyl CoA ligase, succinate dehydrogenase, fumarase and malate dehydrogenase have control coefficients flux for respiration of -0.4, 0.964, -0.123, 0.0008, 0.289, 0.601 and 1.76, respectively; while 2-oxoglutarate dehydrogenase is estimated to have a control coefficient of 0.786 in potato tubers. These results thus indicate that the control of this pathway is distributed among malate dehydrogenase, aconitase, fumarase, succinate dehydrogenase and 2-oxoglutarate dehydrogenase. The unusual distribution of control estimated here is consistent with specific non-cyclic flux mode and cytosolic bypasses that operate in illuminated leaves. These observations are discussed in the context of known regulatory properties of the enzymes and some illustrative examples of how the pathway responds to environmental change are given. KW - metabolic control analysis KW - metabolic regulation KW - respiration KW - Solanum lycopersicum (tomato) KW - TCA cycle Y1 - 2012 U6 - https://doi.org/10.1111/j.1365-3040.2011.02332.x SN - 0140-7791 VL - 35 IS - 1 SP - 1 EP - 21 PB - Wiley-Blackwell CY - Hoboken ER - TY - THES A1 - Axtner, Jan T1 - Immune gene expression and diversity in relation to gastrointestinal parasite burden in small mammals T1 - Immungenexpression und –diversität in Relation zur gastrointestinalen Parasitenbelastung bei Kleinsäugern N2 - MHC genes encode proteins that are responsible for the recognition of foreign antigens and the triggering of a subsequent, adequate immune response of the organism. Thus they hold a key position in the immune system of vertebrates. It is believed that the extraordinary genetic diversity of MHC genes is shaped by adaptive selectional processes in response to the reoccurring adaptations of parasites and pathogens. A large number of MHC studies were performed in a wide range of wildlife species aiming to understand the role of immune gene diversity in parasite resistance under natural selection conditions. Methodically, most of this work with very few exceptions has focussed only upon the structural, i.e. sequence diversity of regions responsible for antigen binding and presentation. Most of these studies found evidence that MHC gene variation did indeed underlie adaptive processes and that an individual’s allelic diversity explains parasite and pathogen resistance to a large extent. Nevertheless, our understanding of the effective mechanisms is incomplete. A neglected, but potentially highly relevant component concerns the transcriptional differences of MHC alleles. Indeed, differences in the expression levels MHC alleles and their potential functional importance have remained unstudied. The idea that also transcriptional differences might play an important role relies on the fact that lower MHC gene expression is tantamount with reduced induction of CD4+ T helper cells and thus with a reduced immune response. Hence, I studied the expression of MHC genes and of immune regulative cytokines as additional factors to reveal the functional importance of MHC diversity in two free-ranging rodent species (Delomys sublineatus, Apodemus flavicollis) in association with their gastrointestinal helminths under natural selection conditions. I established the method of relative quantification of mRNA on liver and spleen samples of both species in our laboratory. As there was no available information on nucleic sequences of potential reference genes in both species, PCR primer systems that were established in laboratory mice have to be tested and adapted for both non-model organisms. In the due course, sets of stable reference genes for both species were found and thus the preconditions for reliable measurements of mRNA levels established. For D. sublineatus it could be demonstrated that helminth infection elicits aspects of a typical Th2 immune response. Whereas mRNA levels of the cytokine interleukin Il4 increased with infection intensity by strongyle nematodes neither MHC nor cytokine expression played a significant role in D. sublineatus. For A. flavicollis I found a negative association between the parasitic nematode Heligmosomoides polygyrus and hepatic MHC mRNA levels. As a lower MHC expression entails a lower immune response, this could be evidence for an immune evasive strategy of the nematode, as it has been suggested for many micro-parasites. This implies that H. polygyrus is capable to interfere actively with the MHC transcription. Indeed, this parasite species has long been suspected to be immunosuppressive, e.g. by induction of regulatory T-helper cells that respond with a higher interleukin Il10 and tumor necrosis factor Tgfb production. Both cytokines in turn cause an abated MHC expression. By disabling recognition by the MHC molecule H. polygyrus might be able to prevent an activation of the immune system. Indeed, I found a strong tendency in animals carrying the allele Apfl-DRB*23 to have an increased infection intensity with H. polygyrus. Furthermore, I found positive and negative associations between specific MHC alleles and other helminth species, as well as typical signs of positive selection acting on the nucleic sequences of the MHC. The latter was evident by an elevated rate of non-synonymous to synonymous substitutions in the MHC sequences of exon 2 encoding the functionally important antigen binding sites whereas the first and third exons of the MHC DRB gene were highly conserved. In conclusion, the studies in this thesis demonstrate that valid procedures to quantify expression of immune relevant genes are also feasible in non-model wildlife organisms. In addition to structural MHC diversity, also MHC gene expression should be considered to obtain a more complete picture on host-pathogen coevolutionary selection processes. This is especially true if parasites are able to interfere with systemic MHC expression. In this case advantageous or disadvantageous effects of allelic binding motifs are abated. The studies could not define the role of MHC gene expression in antagonistic coevolution as such but the results suggest that it depends strongly on the specific parasite species that is involved. N2 - Die Hauptaufgabe von MHC-kodierten Proteinen ist die Erkennung von körperfremden Molekülen sowie das Einleiten einer adäquaten Immunantwort, womit sie eine Schlüsselrolle im Immunsystem der Wirbeltiere einnehmen. Man nimmt an, dass ihre außergewöhnliche Vielfalt eine Antwort auf die sich ständig anpassenden Parasiten und Krankheitserreger ist, durch adaptive Selektion erhalten wird und dass die individuelle Allelausstattung einen Großteil der Parasitenbelastung erklärt, wofür bereits zahlreiche MHC-Studien Hinweise gefunden haben. Trotzdem ist unser Verständnis über die wirkenden Mechanismen teilweise noch lückenhaft. Ein stark vernachlässigter Aspekt hierbei sind z.B. eventuelle Unterschiede in der Genexpression der MHC-Allele und eine geringere Expression wäre gleichbedeutend mit einer geringeren Aktivierung des Immunsystems. Ich habe hierzu zwei frei lebende Kleinsäugerarten (Delomys sublineatus, Apodemus flavicollis) unter natürlichen Selektionsbedingungen untersucht. Dabei habe ich neben der genotypischen Diversität von MHC-Genen auch deren Expression, sowie die Genexpression immunregulativer Zytokine mit in Betracht gezogen und in Relation zur individuellen Belastung mit gastrointestinalen Helminthen gesetzt. Anhand von Leber und Milzproben beider Arten habe ich die Methode der ‚real-time PCR‘ zur relativen Quantifizierung von mRNA im Labor etabliert. Bereits für die Labormaus etablierte PCR-Primersysteme wurden an beiden Arten getestet und so konnten stabile Referenzgene gefunden werden, die Grundvoraussetzung für zuverlässige Genexpressionsmessungen. Für D. sublineatus konnte gezeigt werden, dass Helminthenbefall eine typische Th2 Immunantwort induziert, und dass der Zytokin Il4 Gehalt mit Befallsintensität strongyler Nematoden zunimmt. Es wurde für D. sublineatus kein signifikanter Zusammenhang zwischen MHC Expression oder anderen Zytokinen mit Helminthenbefall gefunden. In A. flavicollis wurde ein negativer Zusammenhang zwischen haptischer MHC-Expression und dem parasitären Nematoden Heligmosomoides polygyrus festgestellt, was auf eine Immunvermeidungsstrategie des Nematoden hindeutet. Ich fand typische positive und negative Assoziationen zwischen MHC-Allelen und anderen Helminthenarten, sowie Zeichen eines positiven Selektionsdruckes auf den MHC-Sequenzen, was sich durch eine erhöhte Rate aminosäureverändernder Mutationen zeigte. Diese nicht-synonymen Veränderungen waren auf Positionen innerhalb des zweiten Exons des DRB-Genes beschränkt, wohingegen die untersuchten Bereiche des ersten und dritten Exons stark konserviert vorlagen. Diese variablen Positionen kodieren Schlüsselstellen im Bereich der Antigenbindungsstelle im MHC Molekül. Zusammenfassend zeigt diese Arbeit, dass Genexpressionsstudien auch an Wildtieren durchgeführt und verlässliche Daten erzeugt werden können. Zusätzlich zur strukturellen Vielfalt sollten zukünftig auch mögliche Genexpressionsunterschiede bei MHC-Studien berücksichtigt werden, um ein kompletteres Bild der koevolutiven Wirt-Parasiten-Beziehungen zeichnen zu können. Dies ist vor allem dann von evolutiver Bedeutung, wenn die Parasiten in der Lage sind die MHC Expression aktiv zu beeinflussen. Die Studien konnten nicht die exakte Bedeutung von MHC-Genexpression in der antagonistischen Koevolution definieren, aber sie konnten zeigen dass diese Bedeutung stark von den jeweils beteiligten Partnern abzuhängen vermag. KW - Parasit KW - Co-Evolution KW - MHC KW - Apodemus KW - Delomys KW - Parasite KW - Co-Evolution KW - MHC KW - Apodemus KW - Delomys Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-65639 ER - TY - JOUR A1 - Balazadeh, Salma A1 - Jaspert, Nils A1 - Arif, Muhammad A1 - Müller-Röber, Bernd A1 - Maurino, Veronica G. T1 - Expression of ROS-responsive genes and transcription factors after metabolic formation of H2O2 in chloroplasts JF - Frontiers in plant science N2 - Glycolate oxidase (GO) catalyses the oxidation of glycolate to glyoxylate, thereby consuming O-2 and producing H2O2. In this work, Arabidopsis thaliana plants expressing GO in the chloroplasts (GO plants) were used to assess the expressional behavior of reactive oxygen species (ROS)-responsive genes and transcription factors (TFs) after metabolic induction of H2O2 formation in chloroplasts. In this organelle, GO uses the glycolate derived from the oxygenase activity of RubisCO. Here, to identify genes responding to an abrupt production of H2O2 in chloroplasts we used quantitative real-time PCR (qRT-PCR) to test the expression of 187 ROS-responsive genes and 1880 TFs after transferring GO and wild-type (WT) plants grown at high CO2 levels to ambient CO2 concentration. Our data revealed coordinated expression changes of genes of specific functional networks 0.5 h after metabolic induction of H2O2 production in GO plants, including the induction of indole glucosinolate and camalexin biosynthesis genes. Comparative analysis using available microarray data suggests that signals for the induction of these genes through H2O2 may originate in the chloroplast. The TF profiling indicated an up-regulation in GO plants of a group of genes involved in the regulation of proanthocyanidin and anthocyanin biosynthesis. Moreover, the upregulation of expression of IF and IF interacting proteins affecting development (e.g., cell division, stem branching, flowering time, flower development) would impact growth and reproductive capacity, resulting in altered development under conditions that promote the formation of H2O2. KW - glycolate oxidase KW - H2O2 KW - ROS-responsive genes KW - transcription factors Y1 - 2012 U6 - https://doi.org/10.3389/fpls.2012.00234 SN - 1664-462X VL - 3 PB - Frontiers Research Foundation CY - Lausanne ER - TY - INPR A1 - Baret, Jean-Christophe A1 - Belder, Detlev A1 - Bier, Frank Fabian A1 - Cao, Jialan A1 - Gruschke, Oliver A1 - Hardt, Steffen A1 - Kirschbaum, Michael A1 - Koehler, J. Michael A1 - Schumacher, Soeren A1 - Urban, G. A. A1 - Viefhues, Martina T1 - Contributors to the 10th Anniversary Germany issue T2 - LAB on a chip : miniaturisation for chemistry and biology Y1 - 2012 U6 - https://doi.org/10.1039/c1lc90139g SN - 1473-0197 VL - 12 IS - 3 SP - 419 EP - 421 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Bartel, Manuela A1 - Hartmann, Stefanie A1 - Lehmann, Karola A1 - Postel, Kai A1 - Quesada, Humberto A1 - Philipp, Eva E. R. A1 - Heilmann, Katja A1 - Micheel, Burkhard A1 - Stuckas, Heiko T1 - Identification of sperm proteins as candidate biomarkers for the analysis of reproductive isolation in Mytilus: a case study for the enkurin locus JF - Marine biology : international journal on life in oceans and coastal waters N2 - Sperm proteins of the marine sessile mussels of the Mytilus edulis species complex are models to investigate reproductive isolation and speciation. This study aimed at identifying sperm proteins and their corresponding genes. This was aided by the use of monoclonal antibodies that preferentially bind to yet unknown sperm molecules. By identifying their target molecules, this approach identified proteins with relevance to Mytilus sperm function. This procedure identified 16 proteins, for example, enkurin, laminin, porin and heat shock proteins. The potential use of these proteins as genetic markers to study reproductive isolation is exemplified by analysing the enkurin locus. Enkurin evolution is driven by purifying selection, the locus displays high levels of intraspecific variation and species-specific alleles group in distinct phylogenetic clusters. These findings characterize enkurin as informative candidate biomarker for analyses of clinal variation and differential introgression in hybrid zones, for example, to understand determinants of reproductive isolation in Baltic Mytilus populations. Y1 - 2012 U6 - https://doi.org/10.1007/s00227-012-2005-7 SN - 0025-3162 VL - 159 IS - 10 SP - 2195 EP - 2207 PB - Springer CY - New York ER -