TY - JOUR A1 - Müller, Matthias M. A1 - Haakh, Harald R. A1 - Calarco, Tommaso A1 - Koch, Christiane P. A1 - Henkel, Carsten T1 - Prospects for fast Rydberg gates on an atom chip JF - Quantum information processing N2 - Atom chips are a promising candidate for a scalable architecture for quantum information processing provided a universal set of gates can be implemented with high fidelity. The difficult part in achieving universality is the entangling two-qubit gate. We consider a Rydberg phase gate for two atoms trapped on a chip and employ optimal control theory to find the shortest gate that still yields a reasonable gate error. Our parameters correspond to a situation where the Rydberg blockade regime is not yet reached. We discuss the role of spontaneous emission and the effect of noise from the chip surface on the atoms in the Rydberg state. KW - Optimal control KW - Phase gate KW - Rydberg atoms KW - Cavity quantum electrodynamics Y1 - 2011 U6 - https://doi.org/10.1007/s11128-011-0296-0 SN - 1570-0755 VL - 10 IS - 6 SP - 771 EP - 792 PB - Springer CY - New York ER -