TY - JOUR A1 - Weiss, Jan A1 - Böttcher, Christoph A1 - Laschewsky, André T1 - Self-assembly of double thermoresponsive block copolymers end-capped with complementary trimethylsilyl groups JF - Soft matter N2 - A set of double thermoresponsive diblock copolymers poly(N-n-propylacrylamide)-block-poly(N-ethylacrylamide) (PNPAM-b-PNEAM) was synthesised by sequential reversible addition-fragmentation chain transfer (RAFT) polymerisations. Using a twofold trimethylsilyl (TMS)-labeled RAFT-agent, the relative size of the two blocks was varied. While soluble as unimers below 15 degrees C, all copolymers exhibited thermally induced two-step self-assembly in water, due to distinct lower critical solution temperature (LCST) phase transitions of PNPAM (around 20 degrees C) and PNEAM (around 70 degrees C). Their temperature-dependent self-organisation in dilute aqueous solution was studied by turbidimetry, dynamic light scattering, transmission electron microscopy, and (1)H NMR spectroscopy. The copolymers show distinct, two-step self-organisation behaviour with respect to transition temperatures, aggregate type and size, which can be correlated to the relative lengths of the low and high LCST blocks. For polymers having short blocks with low LCST, the first thermal transition induces the formation of individual micelles. Further heating above the second thermal transition results reversibly either in a shrink of the micelle size or in aggregation of the micelles, with hydrodynamic diameters below 250 nm. In contrast in the case of polymers having a long block with low LCST, the first thermal transition already leads to clusters of micelles, while the second thermal transition makes the clusters shrink. Noteworthy, the twofold TMS-labeled end groups report not only on the molar masses of the polymers, but can simultaneously serve as NMR-probes for the self-assembly process. The signal of the TMS-aryl end group displays a reversible temperature dependent, two-step splitting that is indicative of the self-organisation of the block copolymers. Y1 - 2011 U6 - https://doi.org/10.1039/c0sm00531b SN - 1744-683X VL - 7 IS - 2 SP - 483 EP - 492 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Buller, Jens A1 - Laschewsky, André A1 - Lutz, Jean-Francois A1 - Wischerhoff, Erik T1 - Tuning the lower critical solution temperature of thermoresponsive polymers by biospecific recognition JF - Polymer Chemistry N2 - A thermosensitive statistical copolymer based on oligo(ethylene glycol) methacrylates incorporating biotin was synthesized by free radical copolymerisation. The influence of added avidin on its thermoresponsive behaviour was investigated. The specific binding of avidin to the biotinylated copolymers provoked a marked increase of the lower critical solution temperature. Y1 - 2011 U6 - https://doi.org/10.1039/c1py00001b SN - 1759-9954 VL - 2 IS - 7 SP - 1486 EP - 1489 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Zehm, Daniel A1 - Laschewsky, André A1 - Heunemann, Peggy A1 - Gradzielski, Michael A1 - Prevost, Sylvain A1 - Liang, Hua A1 - Rabe, Jürgen P. A1 - Lutz, Jean-Francois T1 - Synthesis and self-assembly of amphiphilic semi-brush and dual brush block copolymers in solution and on surfaces JF - Polymer Chemistry N2 - The combination of two techniques of controlled free radical polymerization, namely the reversible addition fragmentation chain transfer (RAFT) and the atom transfer radical polymerization (ATRP) techniques, together with the use of a macromonomer allowed the synthesis of symmetrical triblock copolymers, designed as amphiphilic dual brushes. One type of brush was made of poly(n-butyl acrylate) as soft hydrophobic block, i.e. characterized by a low glass transition temperature, while the other one was made of hydrophilic poly(ethylene glycol) (PEG). The new triblock polymers represent "giant surfactants" according to their molecular architecture. The hydrophobic and hydrophilic blocks microphase separate in the bulk. In aqueous solution, they aggregate into globular micellar aggregates, their size being determined by the length of the stretched polymer molecules. As determined by the combination of various scattering techniques for the dual brush copolymer, a rather compact structure is formed, which is dominated by the large hydrophobic poly(n-butyl acrylate) block. The aggregation number for the dual brush is about 10 times larger than for the "semi-brush" precursor copolymer, due to the packing requirements for the much bulkier hydrophobic core. On mica surfaces the triblock copolymers adsorb with worm-like backbones and stretched out side chains. Y1 - 2011 U6 - https://doi.org/10.1039/c0py00200c SN - 1759-9954 VL - 2 IS - 1 SP - 137 EP - 147 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Dodoo, S. A1 - Steitz, R. A1 - Laschewsky, André A1 - von Klitzing, Regine T1 - Effect of ionic strength and type of ions on the structure of water swollen polyelectrolyte multilayers JF - Physical chemistry, chemical physics : a journal of European Chemical Societies N2 - This study addresses the effect of ionic strength and type of ions on the structure and water content of polyelectrolyte multilayers. Polyelectrolyte multilayers of poly(sodium-4-styrene sulfonate) (PSS) and poly(diallyl dimethyl ammonium chloride) (PDADMAC) prepared at different NaF, NaCl and NaBr concentrations have been investigated by neutron reflectometry against vacuum, H2O and D2O. Both thickness and water content of the multilayers increase with increasing ionic strength and increasing ion size. Two types of water were identified, "void water" which fills the voids of the multilayers and does not contribute to swelling but to a change in scattering length density and "swelling water" which directly contributes to swelling of the multilayers. The amount of void water decreases with increasing salt concentration and anion radius while the amount of swelling water increases with salt concentration and anion radius. This is interpreted as a denser structure in the dry state and larger ability to swell in water (sponge) for multilayers prepared from high ionic strengths and/or salt solution of large anions. No exchange of hydration water or replacement of H by D was detected even after eight hours incubation time in water of opposing isotopic composition. Y1 - 2011 U6 - https://doi.org/10.1039/c0cp01357a SN - 1463-9076 VL - 13 IS - 21 SP - 10318 EP - 10325 PB - Royal Society of Chemistry CY - Cambridge ER - TY - GEN A1 - Troll, K. A1 - Kulkarni, Amit A1 - Wang, W. A1 - Darko, C. A1 - Koumba, A. M. Bivigou A1 - Laschewsky, André A1 - Müller-Buschbaum, Peter A1 - Papadakis, Christine M. T1 - The collapse transition of poly(styrene-b-(N-isopropyl acrylamide)) diblock copolymers in aqueous solution and in thin films T2 - Colloid and polymer science : official journal of the Kolloid-Gesellschaft Y1 - 2011 U6 - https://doi.org/10.1007/s00396-010-2344-1 SN - 0303-402X VL - 289 IS - 2 SP - 227 EP - 227 PB - Springer CY - New York ER - TY - JOUR A1 - Wischerhoff, Erik A1 - Badi, Nezha A1 - Laschewsky, André A1 - Lutz, Jean-Francois ED - Börner, Hans Gerhard ED - Lutz, JF T1 - Smart polymer surfaces concepts and applications in biosciences JF - Advances in polymer science = Fortschritte der Hochpolymeren-Forschung JF - Advances in Polymer Science N2 - Stimuli-responsive macromolecules (i.e., pH-, thermo-, photo-, chemo-, and bioresponsive polymers) have gained exponential importance in materials science, nanotechnology, and biotechnology during the last two decades. This chapter describes the usefulness of this class of polymer for preparing smart surfaces (e.g., modified planar surfaces, particles surfaces, and surfaces of three-dimensional scaffolds). Some efficient pathways for connecting these macromolecules to inorganic, polymer, or biological substrates are described. In addition, some emerging bioapplications of smart polymer surfaces (e.g., antifouling surfaces, cell engineering, protein chromatography, tissue engineering, biochips, and bioassays) are critically discussed. KW - Antifouling surfaces KW - Bioactive surfaces KW - Biocompatible polymers KW - Bioseparation KW - Cell engineering KW - Polymer-modified surfaces KW - Stimuli-responsive polymers Y1 - 2011 SN - 978-3-642-20154-7 U6 - https://doi.org/10.1007/12_2010_88 SN - 0065-3195 VL - 240 IS - 1 SP - 1 EP - 33 PB - Springer CY - Berlin ER - TY - JOUR A1 - Skrabania, Katja A1 - Miasnikova, Anna A1 - Bivigou Koumba, Achille Mayelle A1 - Zehm, Daniel A1 - Laschewsky, André T1 - Examining the UV-vis absorption of RAFT chain transfer agents and their use for polymer analysis JF - Polymer Chemistry N2 - The absorption characteristics of a large set of thiocarbonyl based chain transfer agents (CTAs) were studied by UV-vis spectroscopy in order to identify appropriate conditions for exploiting their absorbance bands in end-group analysis of polymers prepared by reversible addition-fragmentation chain transfer (RAFT) polymerisation. Substitution pattern and solvent polarity were found to affect notably the wavelengths and intensities of the pi-pi*- and n-pi*-transition of the thiocarbonyl bond of dithioester and trithiocarbonate RAFT agents. Therefore, it is advisable to refer in end group analysis to the spectral parameters of low molar mass analogues of the active polymer chain ends, rather than to rely on the specific RAFT agent engaged in the polymerisation. When using appropriate conditions, the quantification of the thiocarbonyl end-groups via the pi-pi* band of the thiocarbonyl moiety around 300-310 nm allows a facile, sensitive and surprisingly precise estimation of the number average molar mass of the polymers produced, without the need of particular end group labels. Moreover, when additional methods for absolute molar mass determination can be applied, the quantification of the thiocarbonyl end-groups by UV-spectroscopy provides a good estimate of the degree of active end group for a given polymer sample. Y1 - 2011 U6 - https://doi.org/10.1039/c1py00173f SN - 1759-9954 VL - 2 IS - 9 SP - 2074 EP - 2083 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Prevost, Sylvain A1 - Wattebled, Laurent A1 - Laschewsky, André A1 - Gradzielski, Michael T1 - Formation of monodisperse charged vesicles in mixtures of cationic gemini surfactants and anionic SDS JF - Langmuir N2 - The aggregation behavior of catanionics formed by the mixture of cationic geminis derived from dodecyltrimethylammonium chloride (DTAC) and anionic sodium dodecylsulfate (SDS) was studied by means of phase studies and comprehensive small-angle neutron scattering (SANS) experiments at 25 degrees C and 50 mM overall concentration. The results are compared to those for the previously studied SDS + DTAC system. Various gemini spacers of different natures and geometries were used, but all of them had similar lengths: an ethoxy bridge, a double bond, and an aromatic ring binding the two DTACs in three different substitutions (ortho, meta, and para). SANS and SAXS data analysis indicates that the spacer has no large effect on the spheroidal micelles of pure surfactants formed at low concentration in water; however, specific effects appear with the addition of electrolytes. Microstructures formed in the catanionic mixtures are rather strongly dependent on the nature of the spacer. The most important finding is that for the hydrophilic, flexible ethoxy bridge, monodisperse vesicles with a fixed anionic/cationic charge ratio (depending only on the surfactant in excess) are formed. Furthermore, the composition of these vesicles shows that strongly charged aggregates are formed. This study therefore provides new opportunities for developing tailor-made gemini surfactants that allow for the fine tuning of catanionic structures. Y1 - 2011 U6 - https://doi.org/10.1021/la103976p SN - 0743-7463 VL - 27 IS - 2 SP - 582 EP - 591 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Glatzel, Stefan A1 - Laschewsky, André A1 - Lutz, Jean-Francois T1 - Well-Defined uncharged polymers with a sharp UCST in water and in physiological milieu JF - Macromolecules : a publication of the American Chemical Society Y1 - 2011 U6 - https://doi.org/10.1021/ma102677k SN - 0024-9297 VL - 44 IS - 2 SP - 413 EP - 415 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Adelsberger, Joseph A1 - Meier-Koll, Andreas A1 - Bivigou Koumba, Achille Mayelle A1 - Busch, Peter A1 - Holderer, Olaf A1 - Hellweg, Thomas A1 - Laschewsky, André A1 - Müller-Buschbaum, Peter A1 - Papadakis, Christine M. T1 - The collapse transition and the segmental dynamics in concentrated micellar solutions of P(S-b-NIPAM) diblock copolymers JF - Colloid and polymer science : official journal of the Kolloid-Gesellschaft N2 - We investigate concentrated solutions of poly(styrene-b-N-isopropyl acrylamide) (P(S-b-NIPAM)) diblock copolymers in deuterated water (D2O). Both structural changes and the changes of the segmental dynamics occurring upon heating through the lower critical solution temperature (LCST) of PNIPAM are studied using small-angle neutron scattering and neutron spin-echo spectroscopy. The collapse of the micellar shell and the cluster formation of collapsed micelles at the LCST as well as an increase of the segmental diffusion coefficient after crossing the LCST are detected. Comparing to our recent results on a triblock copolymer P(S-b-NIPAM-b-S) [25], we observe that the collapse transition of P(S-b-NIPAM) is more complex and that the PNIPAM segmental dynamics are faster than in P(S-b-NIPAM-b-S). KW - Block copolymers KW - Responsive polymers KW - Small-angle neutron scattering KW - Neutron spin-echo spectroscopy Y1 - 2011 U6 - https://doi.org/10.1007/s00396-011-2382-3 SN - 0303-402X VL - 289 IS - 5-6 SP - 711 EP - 720 PB - Springer CY - New York ER -